Wirelessly powered large-area electronics for the Internet of Things

被引:78
|
作者
Portilla, Luis [1 ]
Loganathan, Kalaivanan [2 ]
Faber, Hendrik [2 ]
Eid, Aline [3 ]
Hester, Jimmy G. D. [4 ]
Tentzeris, Manos M. [5 ]
Fattori, Marco [6 ]
Cantatore, Eugenio [6 ]
Jiang, Chen [7 ]
Nathan, Arokia [8 ]
Fiori, Gianluca [9 ]
Ibn-Mohammed, Taofeeq [10 ]
Anthopoulos, Thomas D. [2 ]
Pecunia, Vincenzo [11 ]
机构
[1] Fudan Univ, Frontier Inst Chip & Syst, Shanghai, Peoples R China
[2] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr KSC, Thuwal, Saudi Arabia
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[4] Atheraxon Inc, Atlanta, GA USA
[5] Georgia Inst Technol, Elect & Comp Engn, Atlanta, GA USA
[6] Eindhoven Univ Technol, Integrated Circuits Grp, Eindhoven, Netherlands
[7] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[8] Univ Cambridge, Darwin Coll, Cambridge, England
[9] Univ Pisa, Dipartimento Ingn Informaz, Pisa, Italy
[10] Univ Warwick, WMG, Computat Sustainabil Res Grp CSRG, Coventry, W Midlands, England
[11] Simon Fraser Univ, Sch Sustainable Energy Engn, Surrey, BC, Canada
关键词
FILM TRANSISTORS; CIRCUIT; ENERGY; GAIN;
D O I
10.1038/s41928-022-00898-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Powering the increasing number of sensor nodes used in the Internet of Things creates a technological challenge. The economic and sustainability issues of battery-powered devices mean that wirelessly powered operation-combined with environmentally friendly circuit technologies-will be needed. Large-area electronics-which can be based on organic semiconductors, amorphous metal oxide semiconductors, semiconducting carbon nanotubes and two-dimensional semiconductors-could provide a solution. Here we examine the potential of large-area electronics technology in the development of sustainable, wirelessly powered Internet of Things sensor nodes. We provide a system-level analysis of wirelessly powered sensor nodes, identifying the constraints faced by such devices and highlighting promising architectures and design approaches. We then explore the use of large-area electronics technology in wirelessly powered Internet of Things sensor nodes, with a focus on low-power transistor circuits for digital processing and signal amplification, as well as high-speed diodes and printed antennas for data communication and radiofrequency energy harvesting.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [21] Large-Area MXene Electrode Array for Flexible Electronics
    Lyu, Benzheng
    Kim, Minje
    Jing, Hongyue
    Kang, Joohoon
    Qian, Chuan
    Lee, Sungjoo
    Cho, Jeong Ho
    [J]. ACS NANO, 2019, 13 (10) : 11392 - 11400
  • [22] Digital lithography for large-area electronics on flexible substrates
    Wong, William S.
    Lujan, Rene
    Daniel, Jurgen H.
    Limb, Scott
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1981 - 1985
  • [23] Large-Area, Ensemble Molecular Electronics: Motivation and Challenges
    Vilan, Ayelet
    Aswal, Dinesh
    Cahen, David
    [J]. CHEMICAL REVIEWS, 2017, 117 (05) : 4248 - 4286
  • [24] Gravure Printing of Graphene for Large-Area Flexible Electronics
    Secor, Ethan B.
    Lim, Sooman
    Zhang, Heng
    Frisbie, C. Daniel
    Francis, Lorraine F.
    Hersam, Mark C.
    [J]. ADVANCED MATERIALS, 2014, 26 (26) : 4533 - +
  • [25] Thin-film transistors for large-area electronics
    Geng, Di
    Wang, Kai
    Li, Ling
    Myny, Kris
    Nathan, Arokia
    Jang, Jin
    Kuo, Yue
    Liu, Ming
    [J]. NATURE ELECTRONICS, 2023, 6 (12) : 963 - 972
  • [26] A stretchable nanoscale dielectric for large-area wearable electronics
    Koo, Ja Hoon
    Son, Donghee
    [J]. NATURE ELECTRONICS, 2023, 6 (2) : 107 - 108
  • [27] Wirelessly Powered Internet-of-Things Sensors Facilitated by an Electrically Small Egyptian Axe Dipole Rectenna
    Lin, Wei
    Ziolkowski, Richard W.
    [J]. PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, : 891 - 892
  • [28] Large-area plastic nanogap electronics enabled by adhesion lithography
    James Semple
    Dimitra G. Georgiadou
    Gwenhivir Wyatt-Moon
    Minho Yoon
    Akmaral Seitkhan
    Emre Yengel
    Stephan Rossbauer
    Francesca Bottacchi
    Martyn A. McLachlan
    Donal D. C. Bradley
    Thomas D. Anthopoulos
    [J]. npj Flexible Electronics, 2
  • [29] Amorphous silicon: Vehicle and test bed for large-area electronics
    Wagner, Sigurd
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2010, 207 (03): : 501 - 509
  • [30] Toward manufacturing low-cost, large-area electronics
    Chason, M.
    Gamota, D. R.
    Brazis, P. W., Jr.
    Kalyanasundaram, K.
    Zhang, J.
    Lian, K. K.
    Croswell, R.
    [J]. MRS BULLETIN, 2006, 31 (06) : 471 - 475