Laser crystallization for large-area electronics

被引:0
|
作者
Toshiyuki Sameshima
机构
[1] Tokyo University of Agriculture and Technology,
来源
Applied Physics A | 2009年 / 96卷
关键词
85.30.Tv; 61.72.Uf; 81.10.Jt; 02.60.Cb; 64.70.D-;
D O I
暂无
中图分类号
学科分类号
摘要
Laser crystallization is reviewed for the purpose of fabrication of polycrystalline silicon thin film transistors (poly-Si TFTs). Laser-induced rapid heating is important for formation of crystalline films with a low thermal budget. Reduction of electrically active defects located at grain boundaries is essential for improving electrical properties of poly-Si films and achieving poly-Si TFTs with high performances. The internal film stress is attractive to increase the carrier mobility. Recent developments in laser crystallization methods with pulsed and continuous-wave lasers are also reviewed. Control of heat flow results in crystalline grain growth in the lateral direction, which is important for fabrication of large crystalline grains. We also report an annealing method using a high-power infrared semiconductor laser. High-power lasers will be attractive for rapid formation of crystalline films over a large area and activation of silicon with impurity atoms.
引用
收藏
页码:137 / 144
页数:7
相关论文
共 50 条
  • [31] Hybrid amorphous and polycrystalline silicon devices for large-area electronics
    Mei, P
    Boyce, JB
    Fork, DK
    Anderson, G
    Ho, J
    Lu, J
    Hack, M
    Lujan, R
    [J]. AMORPHOUS AND MICROCRYSTALLINE SILICON TECHNOLOGY-1998, 1998, 507 : 3 - 12
  • [32] Soft deposition of large-area metal contacts for molecular electronics
    Shimizu, Ken T.
    Fabbri, Jason D.
    Jelincic, Jim J.
    Melosh, Nicholas A.
    [J]. ADVANCED MATERIALS, 2006, 18 (12) : 1499 - +
  • [33] Large-area plastic nanogap electronics enabled by adhesion lithography
    Semple, James
    Georgiadou, Dimitra G.
    Wyatt-Moon, Gwenhivir
    Yoon, Minho
    Seitkhan, Akmaral
    Yengel, Emre
    Rossbauer, Stephan
    Bottacchi, Francesca
    McLachlan, Martyn A.
    Bradley, Donal D. C.
    Anthopoulos, Thomas D.
    [J]. NPJ FLEXIBLE ELECTRONICS, 2018, 2 (01)
  • [34] Large-Area Silicon Electronics Using Stretchable Metal Interconnect
    Sosin, S.
    Zoumpoulidis, T.
    Bartek, M.
    Dekker, R.
    [J]. 2009 IEEE 59TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, VOLS 1-4, 2009, : 1059 - 1064
  • [35] Metal patterning on polymers for flexible microsystems and large-area electronics
    Korivi, Naga S.
    Jiang, Li
    [J]. PROCEEDINGS OF THE THIRTY-NINTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2007, : 181 - +
  • [36] A Monolithically Integrable Reconfigurable Antenna Based on Large-Area Electronics
    Wu, Can
    Ma, Yue
    Venkatesh, Suresh
    Mehlman, Yoni
    Ozatay, Murat
    Wagner, Sigurd
    Sturm, James C.
    Verma, Naveen
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024, 59 (05) : 1475 - 1485
  • [37] POLYCRYSTALLINE-SILICON DEVICE TECHNOLOGY FOR LARGE-AREA ELECTRONICS
    HAWKINS, WG
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1986, 33 (04) : 477 - 481
  • [38] Toward Manufacturing Low-Cost, Large-Area Electronics
    Marc Chason
    Daniel R. Gamota
    Paul W. Brazis
    Krishna Kalyanasundaram
    Jie Zhang
    Keryn K. Lian
    Robert Croswell
    [J]. MRS Bulletin, 2006, 31 : 471 - 475
  • [39] Laser deposition of large-area thin films
    Kuzanyan, A. S.
    Petrosyan, V. A.
    Pilosyan, S. Kh.
    Nesterov, V. M.
    [J]. QUANTUM ELECTRONICS, 2011, 41 (03) : 253 - 256
  • [40] Large-Area 2-D Electronics: Materials, Technology, and Devices
    Hsu, Allen
    Wang, Han
    Shin, Yong Cheol
    Mailly, Benjamin
    Zhang, Xu
    Yu, Lili
    Shi, Yumeng
    Lee, Yi Hsien
    Dubey, Madan
    Kim, Ki Kang
    Kong, Jing
    Palacios, Tomas
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (07) : 1638 - 1652