The noncommutative KdV equation and its para-Kähler structure

被引:0
|
作者
Qing Ding
ZhiZhou He
机构
[1] Fudan University,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
para-Kähler structure; noncommutative KdV; geometric realization; 37K25; 37K10; 53C44; 58G30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the noncommutative (n × n)-matrix KdV equation is exactly a reduction of the geometric KdV flows from ℝ to the symmetric para-Grassmannian manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde G_{2n,n} $\end{document} = SL(2n, ℝ)/SL(n, ℝ) × SL(n, ℝ) and it can also be realized geometrically as a motion of Sym-Pohlmeyer curves in the symmetric Lie algebra sl(2n, ℝ) with initial data being suitably restricted. This gives a para-geometric characterization of the noncommutative matrix KdV equation.
引用
收藏
页码:1505 / 1516
页数:11
相关论文
共 50 条
  • [41] Increasing the Earth's albedo: the Köhler equation at sea
    Katz, J. I.
    ENVIRONMENTAL SCIENCE-ATMOSPHERES, 2024, 4 (10): : 1157 - 1160
  • [42] Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds
    Fan, Yushuang
    Zheng, Tao
    MATHEMATICS, 2024, 12 (19)
  • [43] The lattice Schwarzian KdV equation and its symmetries
    Levi, D.
    Petrera, M.
    Scimiterna, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (42) : 12753 - 12761
  • [44] Prolongation structure of the variable coefficient KdV equation
    Yang Yun-Qing
    Chen Yong
    CHINESE PHYSICS B, 2011, 20 (01)
  • [45] Prolongation structure of the variable coefficient KdV equation
    杨云青
    陈勇
    Chinese Physics B, 2011, 20 (01) : 80 - 85
  • [46] On the Kähler-Hodge structure of superconformal manifolds
    Vasilis Niarchos
    Kyriakos Papadodimas
    Journal of High Energy Physics, 2022
  • [47] Kähler structure in the commutative limit of matrix geometry
    Goro Ishiki
    Takaki Matsumoto
    Hisayoshi Muraki
    Journal of High Energy Physics, 2016
  • [48] On the structure of nearly pseudo-Kähler manifolds
    Lars Schäfer
    Monatshefte für Mathematik, 2011, 163 : 339 - 371
  • [49] Gradient estimates for Donaldson's equation on a compact Kähler manifold
    Zhang, Liangdi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [50] The complex Monge–Ampère equation on compact Kähler manifolds
    Xiuxiong Chen
    Weiyong He
    Mathematische Annalen, 2012, 354 : 1583 - 1600