Kähler structure in the commutative limit of matrix geometry

被引:0
|
作者
Goro Ishiki
Takaki Matsumoto
Hisayoshi Muraki
机构
[1] University of Tsukuba,Center for Integrated Research in Fundamental Science and Engineering (CiRfSE)
[2] University of Tsukuba,Graduate School of Pure and Applied Sciences
来源
Journal of High Energy Physics | / 2016卷
关键词
M(atrix) Theories; Non-Commutative Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the commutative limit of matrix geometry described by a large-N sequence of some Hermitian matrices. Under some assumptions, we show that the commutative geometry possesses a Kähler structure. We find an explicit relation between the Kähler structure and the matrix configurations which define the matrix geometry. We also discuss a relation between the matrix configurations and those obtained from the geometric quantization.
引用
收藏
相关论文
共 50 条
  • [1] Kahler structure in the commutative limit of matrix geometry
    Ishiki, Goro
    Matsumoto, Takaki
    Muraki, Hisayoshi
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [2] THE COMMUTATIVE LIMIT OF A MATRIX GEOMETRY
    MADORE, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) : 332 - 335
  • [3] A Kähler structure of the triplectic geometry
    M. A. Grigoriev
    A. M. Semikhatov
    Theoretical and Mathematical Physics, 2000, 124 : 1157 - 1171
  • [4] Pseudo-Hyperkähler Geometry and Generalized Kähler Geometry
    Malin Göteman
    Ulf Lindström
    Letters in Mathematical Physics, 2011, 95 : 211 - 222
  • [5] Generalized Kähler Geometry
    Marco Gualtieri
    Communications in Mathematical Physics, 2014, 331 : 297 - 331
  • [6] Mass in Kähler Geometry
    Hans-Joachim Hein
    Claude LeBrun
    Communications in Mathematical Physics, 2016, 347 : 183 - 221
  • [7] Algebraic Geometry versus Kähler geometry
    Claire Voisin
    Milan Journal of Mathematics, 2010, 78 : 85 - 116
  • [8] A uniqueness theorem in Kähler geometry
    Pengfei Guan
    Qun Li
    Xi Zhang
    Mathematische Annalen, 2009, 345 : 377 - 393
  • [9] Special metrics in Kähler geometry
    Eleonora Di Nezza
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 43 - 49
  • [10] Kähler geometry of Douady spaces
    Reynir Axelsson
    Georg Schumacher
    manuscripta mathematica, 2006, 121 : 277 - 291