Prolongation structure of the variable coefficient KdV equation

被引:2
|
作者
Yang Yun-Qing [1 ]
Chen Yong [1 ,2 ,3 ]
机构
[1] E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
[2] Ningbo Univ, Ctr Nonlinear Sci, Ningbo 315211, Zhejiang, Peoples R China
[3] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
prolongation structure; variable-coefficient KdV equation; Lax pairs; PARTIAL-DIFFERENTIAL EQUATIONS; PAINLEVE PROPERTY; BACKLUND TRANSFORMATION; EVOLUTION-EQUATIONS; KORTEWEG-DEVRIES; LAX PAIRS; PSEUDOPOTENTIALS;
D O I
10.1088/1674-1056/20/1/010206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The prolongation structure methodlogies of Wahlquist-Estabrokk [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-cofficient KdV equation. Based on the obtained prolongation structure, a Lie algebra with five parameters is constructed. Under certain conditions, a Lic algebra representation and three kinds of Lax pairs for the variable- coefficient Kdv equation are derived.
引用
收藏
页数:6
相关论文
共 50 条