Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds

被引:0
|
作者
Fan, Yushuang [1 ]
Zheng, Tao [2 ]
机构
[1] China Univ Geosci Beijing, Math Coll, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Sasakian manifold; basic Chern class; continuity equation; transverse K & auml; hler metric; eta-Einstein metric; MONGE-AMPERE EQUATION; KAHLER-RICCI FLOW; EINSTEIN-METRICS; ELLIPTIC-EQUATIONS; COMPLEX; GEOMETRY;
D O I
10.3390/math12193132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the continuity equation of transverse K & auml;hler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique eta-Einstein metric in the basic Bott-Chern cohomological class of the initial transverse K & auml;hler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the K & auml;hler metrics studied by La Nave and Tian, and also counterparts of the Sasaki-Ricci flow studied by Smoczyk, Wang, and Zhang.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Holomorphic maps from Sasakian manifolds into Kähler manifolds
    Bin Shen
    Yibing Shen
    Xi Zhang
    Chinese Annals of Mathematics, Series B, 2013, 34 : 575 - 586
  • [2] Holomorphic Maps from Sasakian Manifolds into Khler Manifolds
    Bin SHEN
    Yibing SHEN
    Xi ZHANG
    ChineseAnnalsofMathematics(SeriesB), 2013, 34 (04) : 575 - 586
  • [3] Kähler–Einstein metrics on Fano manifolds
    Gang Tian
    Japanese Journal of Mathematics, 2015, 10 : 1 - 41
  • [4] Extremal Kähler Metrics of Toric Manifolds
    An-Min Li
    Li Sheng
    Chinese Annals of Mathematics, Series B, 2023, 44 : 827 - 836
  • [5] Extremal K?hler Metrics of Toric Manifolds
    An-Min LI
    Li SHENG
    ChineseAnnalsofMathematics,SeriesB, 2023, (06) : 827 - 836
  • [6] Projectively induced Kähler cones over regular Sasakian manifolds
    Marini, Stefano
    Tardini, Nicoletta
    Zedda, Michela
    GEOMETRIAE DEDICATA, 2024, 218 (04)
  • [7] Quaternionic Kähler manifolds with Hermitian and Norden metrics
    Mancho Manev
    Journal of Geometry, 2012, 103 (3) : 519 - 530
  • [8] Vaisman manifolds and transversally Kähler–Einstein metrics
    Vladimir Slesar
    Gabriel-Eduard Vîlcu
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 1855 - 1876
  • [9] On the -equation¶over pseudoconvex Kähler manifolds
    Hideaki Kazama
    Shigeharu Takayama
    manuscripta mathematica, 2000, 102 : 25 - 39
  • [10] Revisiting the classification of homogeneous 3-Sasakian and quaternionic Kähler manifolds
    Oliver Goertsches
    Leon Roschig
    Leander Stecker
    European Journal of Mathematics, 2023, 9