Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds

被引:0
|
作者
Fan, Yushuang [1 ]
Zheng, Tao [2 ]
机构
[1] China Univ Geosci Beijing, Math Coll, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Sasakian manifold; basic Chern class; continuity equation; transverse K & auml; hler metric; eta-Einstein metric; MONGE-AMPERE EQUATION; KAHLER-RICCI FLOW; EINSTEIN-METRICS; ELLIPTIC-EQUATIONS; COMPLEX; GEOMETRY;
D O I
10.3390/math12193132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the continuity equation of transverse K & auml;hler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique eta-Einstein metric in the basic Bott-Chern cohomological class of the initial transverse K & auml;hler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the K & auml;hler metrics studied by La Nave and Tian, and also counterparts of the Sasaki-Ricci flow studied by Smoczyk, Wang, and Zhang.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] On asymptotics of complete Ricci-flat Kähler metrics on open manifolds
    Bert Koehler
    Marco Kühnel
    manuscripta mathematica, 2010, 132 : 431 - 462
  • [32] Kähler Finsler metrics are actually strongly Kähler
    Bin Chen
    Yibing Shen
    Chinese Annals of Mathematics, Series B, 2009, 30 : 173 - 178
  • [33] A Moment Map Picture of Relative Balanced Metrics on Extremal Kähler Manifolds
    Yuji Sano
    Carl Tipler
    The Journal of Geometric Analysis, 2021, 31 : 5941 - 5973
  • [34] On Certain Kähler Quotients of Quaternionic Kähler Manifolds
    V. Cortés
    J. Louis
    P. Smyth
    H. Triendl
    Communications in Mathematical Physics, 2013, 317 : 787 - 816
  • [35] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    Communications in Mathematical Physics, 2013, 324 : 637 - 655
  • [36] The limits on boundary of orbifold Kähler–Einstein metrics and Kähler–Ricci flows over quasi-projective manifolds
    Shin Kikuta
    Mathematische Annalen, 2015, 361 : 477 - 510
  • [37] THE PARAKHLER METRICS ON SEMISIMPLE HOMOGENEOUS MANIFOLDS
    侯自新
    ChineseScienceBulletin, 1992, (18) : 1504 - 1507
  • [38] The complex Monge–Ampère equation on compact Kähler manifolds
    Xiuxiong Chen
    Weiyong He
    Mathematische Annalen, 2012, 354 : 1583 - 1600
  • [39] Kähler manifolds of quasi-constant holomorphic sectional curvature and generalized Sasakian space forms
    Cornelia-Livia Bejan
    Sinem Güler
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1173 - 1189
  • [40] On isometries of Kähler manifolds
    Róbert Szőke
    Acta Mathematica Hungarica, 2006, 111 : 77 - 79