Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds

被引:0
|
作者
Fan, Yushuang [1 ]
Zheng, Tao [2 ]
机构
[1] China Univ Geosci Beijing, Math Coll, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Sasakian manifold; basic Chern class; continuity equation; transverse K & auml; hler metric; eta-Einstein metric; MONGE-AMPERE EQUATION; KAHLER-RICCI FLOW; EINSTEIN-METRICS; ELLIPTIC-EQUATIONS; COMPLEX; GEOMETRY;
D O I
10.3390/math12193132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the continuity equation of transverse K & auml;hler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique eta-Einstein metric in the basic Bott-Chern cohomological class of the initial transverse K & auml;hler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the K & auml;hler metrics studied by La Nave and Tian, and also counterparts of the Sasaki-Ricci flow studied by Smoczyk, Wang, and Zhang.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Homogeneous almost-Kähler manifolds and the Chern–Einstein equation
    Dmitri V. Alekseevsky
    Fabio Podestà
    Mathematische Zeitschrift, 2020, 296 : 831 - 846
  • [42] Special Kähler Manifolds
    Daniel S. Freed
    Communications in Mathematical Physics, 1999, 203 : 31 - 52
  • [43] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [44] Calabi-Yau metrics on compact Kähler manifolds with some divisors deleted
    Chengjie Yu
    Frontiers of Mathematics in China, 2008, 3 : 589 - 598
  • [45] Balanced Metrics and Chow Stability of Projective Bundles over Kähler Manifolds II
    Reza Seyyedali
    Journal of Geometric Analysis, 2013, 23 : 1944 - 1975
  • [46] Ding stability and Kähler-Einstein metrics on manifolds with big anticanonical class
    Dervan, Ruadhai
    Reboulet, Remi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (816): : 201 - 239
  • [47] Solution to Hessian type equation with prescribed singularities on compact Kähler manifolds
    Lin, Genglong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [48] Mabuchi Kähler solitons versus extremal Kähler metrics and beyond
    Apostolov, Vestislav
    Lahdili, Abdellah
    Nitta, Yasufumi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (03) : 692 - 710
  • [49] Hyperkähler cones and instantons on quaternionic Kähler manifolds
    Chandrashekar Devchand
    Massimiliano Pontecorvo
    Andrea Spiro
    Annals of Global Analysis and Geometry, 2020, 58 : 291 - 323
  • [50] Totally geodesic immersions of Kähler manifolds and Kähler Frenet curves
    Sadahiro Maeda
    Hiromasa Tanabe
    Mathematische Zeitschrift, 2006, 252 : 787 - 795