The noncommutative KdV equation and its para-Kähler structure

被引:0
|
作者
Qing Ding
ZhiZhou He
机构
[1] Fudan University,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
para-Kähler structure; noncommutative KdV; geometric realization; 37K25; 37K10; 53C44; 58G30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the noncommutative (n × n)-matrix KdV equation is exactly a reduction of the geometric KdV flows from ℝ to the symmetric para-Grassmannian manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde G_{2n,n} $\end{document} = SL(2n, ℝ)/SL(n, ℝ) × SL(n, ℝ) and it can also be realized geometrically as a motion of Sym-Pohlmeyer curves in the symmetric Lie algebra sl(2n, ℝ) with initial data being suitably restricted. This gives a para-geometric characterization of the noncommutative matrix KdV equation.
引用
收藏
页码:1505 / 1516
页数:11
相关论文
共 50 条
  • [31] (Para-)Holomorphic and Conjugate Connections on (Para-)Hermitian and (Para-)Kähler Manifolds
    Sergey Grigorian
    Jun Zhang
    Results in Mathematics, 2019, 74
  • [32] Symmetries of the complex Dirac-Kähler equation
    I. Yu. Krivsky
    R. R. Lompay
    V. M. Simulik
    Theoretical and Mathematical Physics, 2005, 143 : 541 - 558
  • [33] On third Poisson structure of KDV equation
    Gorsky, A
    Marshakov, A
    Orlov, A
    Rubtsov, V
    THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 103 (03) : 701 - 705
  • [34] The Prolongation Structure of a Coupled Kdv Equation
    Jia, Yang-jie
    Duan, Wen-shan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (02): : 430 - 437
  • [35] Modeling of the KdV equation and its solution
    OuYang, SC
    KYBERNETES, 1998, 27 (6-7) : 656 - 668
  • [36] On the singularity structure of the discrete KdV equation
    Um, Doyong
    Willox, Ralph
    Grammaticos, Basil
    Ramani, Alfred
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (11)
  • [37] NOTE ON THE POISSON STRUCTURE FOR KDV EQUATION
    ARKADIEV, VA
    POGREBKOV, AK
    POLIVANOV, MK
    DOKLADY AKADEMII NAUK SSSR, 1988, 298 (02): : 324 - 328
  • [38] The Prolongation Structure of a Coupled Kdv Equation
    Yang-jie JIA
    Wen-shan DUAN
    Acta Mathematicae Applicatae Sinica, 2018, 34 (02) : 430 - 437
  • [39] The Prolongation Structure of a Coupled Kdv Equation
    Yang-jie Jia
    Wen-shan Duan
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 430 - 437
  • [40] On the structure of co-Kähler manifolds
    Giovanni Bazzoni
    John Oprea
    Geometriae Dedicata, 2014, 170 : 71 - 85