The noncommutative KdV equation and its para-Kähler structure

被引:0
|
作者
Qing Ding
ZhiZhou He
机构
[1] Fudan University,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
para-Kähler structure; noncommutative KdV; geometric realization; 37K25; 37K10; 53C44; 58G30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the noncommutative (n × n)-matrix KdV equation is exactly a reduction of the geometric KdV flows from ℝ to the symmetric para-Grassmannian manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde G_{2n,n} $\end{document} = SL(2n, ℝ)/SL(n, ℝ) × SL(n, ℝ) and it can also be realized geometrically as a motion of Sym-Pohlmeyer curves in the symmetric Lie algebra sl(2n, ℝ) with initial data being suitably restricted. This gives a para-geometric characterization of the noncommutative matrix KdV equation.
引用
收藏
页码:1505 / 1516
页数:11
相关论文
共 50 条
  • [21] Dirac–Kähler Equation
    S. I. Kruglov
    International Journal of Theoretical Physics, 2002, 41 : 653 - 687
  • [22] Relation between the Kähler equation and the Dirac equation
    Vittorio Cantoni
    International Journal of Theoretical Physics, 1997, 36 : 385 - 393
  • [23] On the complete solutions to the Tchebychev affine K?hler equation and its geometric significance
    Xu, Ruiwei
    Li, Xingxiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [24] On the -equation¶over pseudoconvex Kähler manifolds
    Hideaki Kazama
    Shigeharu Takayama
    manuscripta mathematica, 2000, 102 : 25 - 39
  • [25] POISSON STRUCTURE FOR THE KDV EQUATION
    FADDEEV, LD
    TAKHTAJAN, LA
    LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (2-3) : 183 - 188
  • [26] PARA-K VALUES OF METHYL RED INDICATOR IN ALCOHOL-WATER MIXTURES
    LARSON, WD
    TOMSICEK, WJ
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1950, 72 (06) : 2774 - 2775
  • [27] A Kähler structure of the triplectic geometry
    M. A. Grigoriev
    A. M. Semikhatov
    Theoretical and Mathematical Physics, 2000, 124 : 1157 - 1171
  • [28] Kähler structure on Hurwitz spaces
    Reynir Axelsson
    Indranil Biswas
    Georg Schumacher
    Manuscripta Mathematica, 2015, 147 : 63 - 79
  • [29] Interaction of Codazzi Couplings with (Para-)Kähler Geometry
    Teng Fei
    Jun Zhang
    Results in Mathematics, 2017, 72 : 2037 - 2056
  • [30] A fully noncommutative analog of the Painleve IV equation and a structure of its solutions*
    Bobrova, Irina
    Retakh, Vladimir
    Rubtsov, Vladimir
    Sharygin, Georgy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (47)