Eigenfunctions and Fundamental Solutions of the Fractional Laplace and Dirac Operators: The Riemann-Liouville Case

被引:0
|
作者
M. Ferreira
N. Vieira
机构
[1] Polytechnic Institute of Leiria,School of Technology and Management
[2] University of Aveiro,Department of Mathematics, CIDMA
来源
关键词
Fractional partial differential equations; Fractional Laplace and Dirac operators; Riemann-Liouville derivatives and integrals of fractional order; Eigenfunctions and fundamental solution; Laplace transform; Mittag-Leffler function; Primary 35R11; Secondary 30G35; 26A33; 35P10; 35A22; 35A08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator Δ+(α,β,γ):=Dx0+1+α+Dy0+1+β+Dz0+1+γ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _+^{(\alpha , \beta , \gamma )}:= D_{x_0^+}^{1+\alpha } +D_{y_0^+}^{1+\beta } +D_{z_0^+}^{1+\gamma },$$\end{document} where (α,β,γ)∈]0,1]3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta , \gamma ) \in \,]0,1]^3$$\end{document}, and the fractional derivatives Dx0+1+α,Dy0+1+β,Dz0+1+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{x_0^+}^{1+\alpha }, D_{y_0^+}^{1+\beta }, D_{z_0^+}^{1+\gamma }$$\end{document} are in the Riemann–Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator Δ+(α,β,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _+^{(\alpha ,\beta ,\gamma )}$$\end{document} in classes of functions admitting a summable fractional derivative. Making use of the Mittag–Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
引用
收藏
页码:1081 / 1100
页数:19
相关论文
共 50 条
  • [21] Existence of Solutions for Riemann-Liouville Fractional Boundary Value Problem
    Xie, Wenzhe
    Xiao, Jing
    Luo, Zhiguo
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [22] ON THE SET OF SOLUTIONS OF FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS
    Abbas, Said
    Benchohra, Mouffak
    DEMONSTRATIO MATHEMATICA, 2013, 46 (02) : 271 - 281
  • [23] Some integral inequalities for (k, s) - Riemann-Liouville fractional operators
    Houas, Mohamed
    Dahmani, Zoubir
    Sarikaya, Mehmet Zeki
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1575 - 1585
  • [24] New integral inequalities involving generalized Riemann-Liouville fractional operators
    Delgado, Juan Gabriel Galeano
    Valdes, Juan E. Napoles
    Reyes, Edgardo Perez
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 481 - 487
  • [25] The Minkowski's inequalities via Ω-Riemann-Liouville fractional integral operators
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 893 - 906
  • [26] Approximation by Riemann-Liouville type fractional α -Bernstein-Kantorovich operators
    Berwal, Sahil
    Mohiuddine, S. A.
    Kajla, Arun
    Alotaibi, Abdullah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8275 - 8288
  • [27] On the Riemann-Liouville operators with variable limits
    Prokhorov, DV
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (01) : 137 - 156
  • [28] Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R
    Ledesma, Cesar E. Torres
    Rodriguez, Jesus A.
    Zuniga, Felipe A.
    ADVANCES IN OPERATOR THEORY, 2024, 9 (02)
  • [29] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [30] RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS
    Mei, Zhan-Dong
    Peng, Ji-Gen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,