Eigenfunctions and Fundamental Solutions of the Fractional Laplace and Dirac Operators: The Riemann-Liouville Case

被引:0
|
作者
M. Ferreira
N. Vieira
机构
[1] Polytechnic Institute of Leiria,School of Technology and Management
[2] University of Aveiro,Department of Mathematics, CIDMA
来源
关键词
Fractional partial differential equations; Fractional Laplace and Dirac operators; Riemann-Liouville derivatives and integrals of fractional order; Eigenfunctions and fundamental solution; Laplace transform; Mittag-Leffler function; Primary 35R11; Secondary 30G35; 26A33; 35P10; 35A22; 35A08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator Δ+(α,β,γ):=Dx0+1+α+Dy0+1+β+Dz0+1+γ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _+^{(\alpha , \beta , \gamma )}:= D_{x_0^+}^{1+\alpha } +D_{y_0^+}^{1+\beta } +D_{z_0^+}^{1+\gamma },$$\end{document} where (α,β,γ)∈]0,1]3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta , \gamma ) \in \,]0,1]^3$$\end{document}, and the fractional derivatives Dx0+1+α,Dy0+1+β,Dz0+1+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{x_0^+}^{1+\alpha }, D_{y_0^+}^{1+\beta }, D_{z_0^+}^{1+\gamma }$$\end{document} are in the Riemann–Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator Δ+(α,β,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _+^{(\alpha ,\beta ,\gamma )}$$\end{document} in classes of functions admitting a summable fractional derivative. Making use of the Mittag–Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
引用
收藏
页码:1081 / 1100
页数:19
相关论文
共 50 条