Fractional Ince equation with a Riemann-Liouville fractional derivative

被引:7
|
作者
Parra-Hinojosa, Alfredo [1 ]
Gutierrez-Vega, Julio C. [1 ]
机构
[1] Tecnol Monterrey, Photon & Math Opt Grp, Mexico City 64849, DF, Mexico
关键词
Ince equation; Fractional calculus; Ince polynomials; Eigenvalue curves; Stability; Hill equation;
D O I
10.1016/j.amc.2013.04.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order alpha > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves a(epsilon) in function of the parameter epsilon, the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue curves from the a-axis in the (epsilon, a)-plane, as well as the appearance of degenerate eigenvalues for suitable selections of the parameters. The fractional solutions, valid for the steady state of the system, are not orthogonal and have no defined parity. We also introduce a discrete numerical method to evaluate the Riemann-Liouville fractional derivative with lower terminal at -infinity for a class of functions. The case alpha = 1 represents the Ince equation with an additional constant damping. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:10695 / 10705
页数:11
相关论文
共 50 条
  • [1] Fractional Langevin equation and Riemann-Liouville fractional derivative
    Kwok Sau Fa
    [J]. The European Physical Journal E, 2007, 24 : 139 - 143
  • [2] Fractional langevin equation and riemann-liouville fractional derivative
    Fa, Kwok Sau
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2007, 24 (02): : 139 - 143
  • [3] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [4] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    [J]. RESULTS IN PHYSICS, 2020, 19
  • [5] Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative
    Sandev, Trifce
    Metzler, Ralf
    Tomovski, Zivorad
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (25)
  • [6] ON A NONLOCAL FRACTIONAL SOBOLEV EQUATION WITH RIEMANN-LIOUVILLE DERIVATIVE
    Van, Ho Thi Kim
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 13 (03): : 13 - 24
  • [7] On a backward problem for fractional diffusion equation with Riemann-Liouville derivative
    Nguyen Huy Tuan
    Nguyen Hoang Tuan
    Baleanu, Dumitru
    Tran Ngoc Thach
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (03) : 1292 - 1312
  • [8] Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative
    Le Dinh Long
    Ho Duy Binh
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Huu Can
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6194 - 6216
  • [9] A Fractional Boundary Value Problem with φ-Riemann-Liouville Fractional Derivative
    Ji, Dehong
    Yang, Yitao
    [J]. IAENG International Journal of Applied Mathematics, 2020, 50 (04) : 1 - 5
  • [10] Extension of the fractional derivative operator of the Riemann-Liouville
    Baleanu, Dumitru
    Agarwal, Praveen
    Parmar, Rakesh K.
    Alqurashi, Maysaa M.
    Salahshour, Soheil
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2914 - 2924