The Minkowski's inequalities via Ω-Riemann-Liouville fractional integral operators

被引:0
|
作者
Aljaaidi, Tariq A. [1 ]
Pachpatte, Deepak B. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431001, MS, India
关键词
Inequalities; Fractional inequalities; y-Riemann-Liouville fractional integral; psi-Riemann-Liouville derivative; GRUSS-TYPE INEQUALITIES; EXISTENCE;
D O I
10.1007/s12215-020-00539-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main objective of this paper is to establish some new fractional integral inequalities of Minkowski's type by using psi-Riemann-Liouville fractional integral operator, which is the classical Riemann-Liouville fractional integral of any function with respect to another function. Further, we establish some new fractional inequalities related to the reverse Minkowski's type inequality via psi-Riemann-Liouville fractional integral operator. Using this fractional integral operator, some more integral inequalities of reverse Minkowski's type are also obtained.
引用
收藏
页码:893 / 906
页数:14
相关论文
共 50 条
  • [1] Some integral inequalities for (k, s) - Riemann-Liouville fractional operators
    Houas, Mohamed
    Dahmani, Zoubir
    Sarikaya, Mehmet Zeki
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1575 - 1585
  • [2] SEVERAL INTEGRAL INEQUALITIES FOR GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL OPERATORS
    Galeano Delgado, Juan Gabriel
    Napoles Valdes, Juan E.
    Perez Reyes, Edgardo
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 269 - 278
  • [3] SOME NEW INTEGRAL INEQUALITIES VIA RIEMANN-LIOUVILLE INTEGRAL OPERATORS
    Ekinci, Alper
    Ozdemir, M. Emin
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2019, 18 (03) : 288 - 295
  • [4] New integral inequalities involving generalized Riemann-Liouville fractional operators
    Delgado, Juan Gabriel Galeano
    Valdes, Juan E. Napoles
    Reyes, Edgardo Perez
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 481 - 487
  • [5] Bounds of Riemann-Liouville fractional integral operators
    Farid, Ghulam
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 637 - 648
  • [6] Compactness of Riemann-Liouville fractional integral operators
    Lan, Kunquan
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (84) : 1 - 15
  • [7] WEIGHTED NORM INEQUALITIES FOR THE RIEMANN-LIOUVILLE AND WEYL FRACTIONAL INTEGRAL-OPERATORS
    ANDERSEN, KF
    SAWYER, ET
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (02) : 547 - 558
  • [8] Some results on integral inequalities via Riemann-Liouville fractional integrals
    Li, Xiaoling
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Ahmad, Farooq
    Bari, Mehwish
    Farooq, Shan E.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [9] INEQUALITIES GENERATED WITH RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR
    Gurbuz, M.
    Ozturk, O.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 91 - 100
  • [10] New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators
    Kang, Qiong
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nadeem, Mehroz
    Nasir, Jamshed
    Yang, Hong
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020