Some boundedness results for Ψ-Riemann-Liouville and Ψ-Riemann-Liouville tempered fractional integrals in R

被引:0
|
作者
Ledesma, Cesar E. Torres [1 ]
Rodriguez, Jesus A. [2 ]
Zuniga, Felipe A. [3 ]
机构
[1] Univ Nacl Trujillo, Fac Ciencias Fis & Matemat, Grp Invest Calculo fraccionario & aplicac Inst Inv, Ave Juan Pablo 2 s-n, Trujillo, Peru
[2] Univ Nacl Trujillo, Dept Matemat, Grp Invest Calculo fraccionario & aplicac, Ave Juan Pablo 2 s-n, Trujillo, Peru
[3] Univ Nacl Trujillo, Escuela Academ Profes Matemat, Ave Juan Pablo 2 s-n, Trujillo, Peru
关键词
psi-Riemann-Liouville fractional integrals; psi-Riemann-Liouville tempered fractional integrals; Hardy-Littlewood; Maximal function; INEQUALITIES;
D O I
10.1007/s43036-023-00310-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using Hardy-Littlewood maximal function, we deal with the boundedness of the psi-Riemann-Liouville in Lebesgue and weighted Lebesgue space in the real line. Moreover, we consider the boundedness of psi-Riemann-Liouville tempered fractional integrals in weighted Lebesgue space in the real line.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Some boundedness results for Riemann-Liouville tempered fractional integrals
    César E. Torres Ledesma
    Hernán A. Cuti Gutierrez
    Jesús P. Avalos Rodríguez
    Willy Zubiaga Vera
    [J]. Fractional Calculus and Applied Analysis, 2024, 27 : 818 - 847
  • [2] Some boundedness results for Riemann-Liouville tempered fractional integrals
    Ledesma, Cesar E. Torres
    Gutierrez, Hernan A. Cuti
    Rodriguez, Jesus P. Avalos
    Vera, Willy Zubiaga
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 818 - 847
  • [3] Some inequalities via ψ-Riemann-Liouville fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    [J]. AIMS MATHEMATICS, 2019, 4 (05): : 1403 - 1415
  • [4] On boundedness and compactness of Riemann-Liouville fractional operators
    Farsani, S. M.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (02) : 368 - 378
  • [5] On boundedness and compactness of Riemann-Liouville fractional operators
    S. M. Farsani
    [J]. Siberian Mathematical Journal, 2013, 54 : 368 - 378
  • [6] Some results on integral inequalities via Riemann-Liouville fractional integrals
    Li, Xiaoling
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Ahmad, Farooq
    Bari, Mehwish
    Farooq, Shan E.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [7] Generalizations of Riemann-Liouville fractional integrals and applications
    Lan, Kunquan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [8] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    [J]. Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [9] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Morita, Tohru
    Sato, Ken-ichi
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 630 - 653
  • [10] On Some Generalized Integral Inequalities for Riemann-Liouville Fractional Integrals
    Sarikaya, Mehmet Zeki
    Filiz, Hatice
    Kiris, Mehmet Eyup
    [J]. FILOMAT, 2015, 29 (06) : 1307 - 1314