ON THE SET OF SOLUTIONS OF FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS

被引:0
|
作者
Abbas, Said [1 ]
Benchohra, Mouffak [2 ]
机构
[1] Univ Saida, Lab Math, BP 138, Saida 20000, Algeria
[2] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, Sidi Bel Abbes 22000, Algeria
关键词
integral inclusion; left-sided mixed Riemann-Liouville integral of fractional order; solution set; fixed point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the arcwise connectedness of the solution set of a nonclosed, nonconvex Fredholm type, Riemann-Liouville integral inclusion of fractional order.
引用
收藏
页码:271 / 281
页数:11
相关论文
共 50 条
  • [1] FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS WITH TWO INDEPENDENT VARIABLES AND MULTIPLE DELAY
    Abbas, Said
    Benchohra, Mouffak
    [J]. OPUSCULA MATHEMATICA, 2013, 33 (02) : 209 - 222
  • [2] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [3] EXISTENCE OF SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL RIEMANN-LIOUVILLE INTEGRAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Ntouyas, Sotiris
    [J]. MATHEMATICA BOHEMICA, 2014, 139 (03): : 451 - 465
  • [4] Geometric Interpretation for Riemann-Liouville Fractional-Order Integral
    Bai, Lu
    Xue, Dingyu
    Meng, Li
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3225 - 3230
  • [5] Fractional Order Riemann-Liouville Integral Equations with Multiple Time Delays
    Abbas, Said
    Benchohra, Mouffak
    [J]. APPLIED MATHEMATICS E-NOTES, 2012, 12 : 79 - 87
  • [6] On right multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 377 - 387
  • [7] On left multidimensional Riemann-Liouville fractional integral
    Anastassiou, George
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 239 - 248
  • [8] Bounds of Riemann-Liouville fractional integral operators
    Farid, Ghulam
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 637 - 648
  • [9] Compactness of Riemann-Liouville fractional integral operators
    Lan, Kunquan
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (84) : 1 - 15
  • [10] EXISTENCE RESULTS FOR RIEMANN-LIOUVILLE FRACTIONAL EVOLUTION INCLUSIONS
    Huang, Yong
    Lv, Jingyun
    Liu, Zhenhai
    [J]. MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 305 - 325