Approximation with Riemann-Liouville fractional derivatives

被引:0
|
作者
Anastassiou, George A. [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
来源
关键词
Riemann-Liouville fractional derivative; positive sublinear operators; modulus of continuity; comonotonic operator; Choquet integral;
D O I
10.24193/subbmath.2019.3.07
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study quantitatively with rates the pointwise convergence of a sequence of positive sublinear operators to the unit operator over continuous functions. This takes place under low order smothness, less than one, of the approximated function and it is expressed via the left and right Riemann-Liouville fractional derivatives of it. The derived related inequalities in their right hand sides contain the moduli of continuity of these fractional derivatives and they are of Shisha-Mond type. We give applications to Bernstein Max-product operators and to positive sublinear comonotonic operators connecting them to Choquet integral.
引用
收藏
页码:357 / 365
页数:9
相关论文
共 50 条
  • [1] Fractional diffusion based on Riemann-Liouville fractional derivatives
    Hilfer, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16): : 3914 - 3917
  • [2] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [3] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    [J]. Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [4] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Morita, Tohru
    Sato, Ken-ichi
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 630 - 653
  • [5] Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu
    Atangana, Abdon
    Gomez-Aguilar, J. F.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1502 - 1523
  • [6] Fractional boundary value problems with Riemann-Liouville fractional derivatives
    Tan, Jingjing
    Cheng, Caozong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [7] Fractional boundary value problems with Riemann-Liouville fractional derivatives
    Jingjing Tan
    Caozong Cheng
    [J]. Advances in Difference Equations, 2015
  • [8] Diffusive representation of Riemann-Liouville fractional integrals and derivatives
    Guo, Yuxiang
    Ma, Baoli
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11335 - 11339
  • [9] CAUCHY PROBLEM FOR THE EQUATIONS WITH FRACTIONAL OF RIEMANN-LIOUVILLE DERIVATIVES
    Zabreiko, Petr P.
    Ponomareva, Svetlana, V
    [J]. DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (01): : 13 - 20
  • [10] A New Numerical Approximation of Fractional Differentiation: Upwind Discretization for Riemann-Liouville and Caputo Derivatives
    Atangana, Abdon
    [J]. MATHEMATICAL METHODS IN ENGINEERING: APPLICATIONS IN DYNAMICS OF COMPLEX SYSTEMS, 2019, 24 : 192 - 211