Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations

被引:0
|
作者
Nafiseh Noghrei
Asghar Kerayechian
Ali R. Soheili
机构
[1] Ferdowsi University of Mashhad,Department of Applied Mathematics
[2] Ferdowsi University of Mashhad,Department of Applied Mathematics, School of Mathematical Sciences
来源
Mathematical Sciences | 2022年 / 16卷
关键词
Space-fractional diffusion equations; Riemann–Liouville fractional derivatives; DE-Sinc quadrature method; Gaussian-RBF; 76R50; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
The combination of Sinc quadrature method and double exponential transformation (DE) is a powerful tool to approximate the singular integrals, and radial basis functions (RBFs) are useful for the higher-dimensional space problem. In this study, we develop a numerical method base on Gaussian-RBF combined with QR-factorization of arising matrix and DE-quadrature Sinc method to approximate the solution of two-dimensional space-fractional diffusion equations. When the number of central nodes increases, the ill-conditioning of resultant matrix can be eliminated by using GRBF-QR method. Two numerical examples have been presented to test the efficiency and accuracy of the method.
引用
收藏
页码:87 / 96
页数:9
相关论文
共 50 条
  • [21] Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity
    Zhaopeng Hao
    Wanrong Cao
    Shengyue Li
    [J]. Numerical Algorithms, 2021, 86 : 1071 - 1087
  • [22] Matrix splitting preconditioning based on sine transform for solving two-dimensional space-fractional diffusion equations
    Lu, Kang-Ya
    Miao, Cun-Qiang
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 835 - 856
  • [23] Differential quadrature method for space-fractional diffusion equations on 2D irregular domains
    Zhu, X. G.
    Yuan, Z. B.
    Liu, F.
    Nie, Y. F.
    [J]. NUMERICAL ALGORITHMS, 2018, 79 (03) : 853 - 877
  • [24] Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity
    Hao, Zhaopeng
    Cao, Wanrong
    Li, Shengyue
    [J]. NUMERICAL ALGORITHMS, 2021, 86 (03) : 1071 - 1087
  • [25] Differential quadrature method for space-fractional diffusion equations on 2D irregular domains
    X. G. Zhu
    Z. B. Yuan
    F. Liu
    Y. F. Nie
    [J]. Numerical Algorithms, 2018, 79 : 853 - 877
  • [26] Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function
    Alipanah, Amjad
    Esmaeili, Shahrokh
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (18) : 5342 - 5347
  • [27] A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations
    Liu, Jun
    Zhu, Chen
    Chen, Yanping
    Fu, Hongfei
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 160 : 331 - 348
  • [28] High Accuracy Spectral Method for the Space-Fractional Diffusion Equations
    Zhai, Shuying
    Gui, Dongwei
    Zhao, Jianping
    Feng, Xinlong
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (03): : 274 - 286
  • [29] Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations
    Yue, Xiaoqiang
    Shu, Shi
    Xu, Xiaowen
    Bu, Weiping
    Pan, Kejia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (11) : 3471 - 3484
  • [30] Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations
    Bu, Weiping
    Tang, Yifa
    Yang, Jiye
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 26 - 38