A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations

被引:9
|
作者
Liu, Jun [1 ]
Zhu, Chen [1 ]
Chen, Yanping [2 ]
Fu, Hongfei [3 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[3] Ocean Univ China, Sch Math Sci, Qingdao 266100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Space-fractional diffusion equations; ADI; Quadratic spline collocation method; Stability; Convergence; FINITE-DIFFERENCE METHOD; SPECTRAL METHOD; ELEMENT-METHOD; VOLUME METHOD; SCHEME; APPROXIMATIONS; STABILITY; EFFICIENT; CONVERGENCE;
D O I
10.1016/j.apnum.2020.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a Crank-Nicolson ADI quadratic spline collocation method for the approximation of two-dimensional two-sided Riemann-Liouville space-fractional diffusion equation, in which a quadratic spline collocation method combined with ADI approach is considered for the discretization of the space-fractional derivatives with orders 1 < alpha, beta < 2, and a Crank-Nicolson method is proposed for the discretization of the first-order time derivative. The novel method is proved to be unconditionally stable for gamma(*) (approximate to 1.2576) < alpha, beta <= 2. Moreover, the method is shown to be convergent with second order in time and min{3 - alpha, 3 - beta} order in space, respectively. Finally, numerical examples are attached to confirm the theoretical results. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 348
页数:18
相关论文
共 50 条
  • [1] An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
    Fairweather, Graeme
    Yang, Xuehua
    Xu, Da
    Zhang, Haixiang
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1217 - 1239
  • [2] An ADI Crank–Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
    Graeme Fairweather
    Xuehua Yang
    Da Xu
    Haixiang Zhang
    [J]. Journal of Scientific Computing, 2015, 65 : 1217 - 1239
  • [3] A Crank-Nicolson collocation spectral method for the two-dimensional telegraph equations
    Zhou, Yanjie
    Luo, Zhendong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [4] CRANK-NICOLSON SCHEME FOR TWO-DIMENSIONAL IN SPACE FRACTIONAL DIFFUSION EQUATIONS WITH FUNCTIONAL DELAY
    Ibrahim, M.
    Pimenov, V. G.
    [J]. IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 128 - 141
  • [5] A CRANK-NICOLSON ADI SPECTRAL METHOD FOR A TWO-DIMENSIONAL RIESZ SPACE FRACTIONAL NONLINEAR REACTION-DIFFUSION EQUATION
    Zeng, Fanhai
    Liu, Fawang
    Li, Changpin
    Burrage, Kevin
    Turner, Ian
    Anh, V.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 2599 - 2622
  • [6] Extrapolated ADI Crank-Nicolson orthogonal spline collocation for coupled Burgers' equations
    Fisher, Nick
    Bialecki, Bernard
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (01) : 45 - 73
  • [7] CRANK-NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS
    Lin, Xue-Lei
    Ng, Michael K.
    Sun, Hai-Wei
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 997 - 1019
  • [8] A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation
    Fu, Hongfei
    Liu, Huan
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 316 - 334
  • [9] Linearized Crank-Nicolson Scheme for the Two-Dimensional Nonlinear Riesz Space-Fractional Convection-Diffusion Equation
    Basha, Merfat
    Anley, Eyaya Fekadie
    Dai, Binxiang
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [10] An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems
    Fernandes, Ryan I.
    Fairweather, Graeme
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (19) : 6248 - 6267