An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems

被引:30
|
作者
Fernandes, Ryan I. [2 ]
Fairweather, Graeme [1 ]
机构
[1] Amer Math Soc, Ann Arbor, MI 48103 USA
[2] Petr Inst, Dept Math, Abu Dhabi, U Arab Emirates
关键词
Nonlinear reaction-diffusion systems; Alternating direction implicit method; Orthogonal spline collocation; Extrapolated Crank-Nicolson method; Brusselator; Gray-Scott; Gierer-Meinhardt; Schnakenberg models; DIAGONAL LINEAR-SYSTEMS; BIOLOGICAL PATTERN-FORMATION; GIERER-MEINHARDT SYSTEM; MODIFIED ALTERNATE ROW; STIRRED TANK REACTOR; DIFFERENTIAL-EQUATIONS; AUTOCATALYTIC REACTIONS; COLUMN ELIMINATION; PARABOLIC PROBLEMS; FORTRAN PACKAGES;
D O I
10.1016/j.jcp.2012.04.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An alternating direction implicit (ADI) orthogonal spline collocation (OSC) method is described for the approximate solution of a class of nonlinear reaction-diffusion systems. Its efficacy is demonstrated on the solution of well-known examples of such systems, specifically the Brusselator, Gray-Scott, Gierer-Meinhardt and Schnakenberg models, and comparisons are made with other numerical techniques considered in the literature. The new ADI method is based on an extrapolated Crank-Nicolson OSC method and is algebraically linear. It is efficient, requiring at each time level only O(N) operations where N is the number of unknowns. Moreover, it is shown to produce approximations which are of optimal global accuracy in various norms, and to possess superconvergence properties. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:6248 / 6267
页数:20
相关论文
共 50 条
  • [1] An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems on evolving domains
    Fernandes, Ryan I.
    Bialecki, Bernard
    Fairweather, Graeme
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 561 - 580
  • [2] Extrapolated ADI Crank-Nicolson orthogonal spline collocation for coupled Burgers' equations
    Fisher, Nick
    Bialecki, Bernard
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (01) : 45 - 73
  • [3] A Crank-Nicolson orthogonal spline collocation method for vibration problems
    Li, BK
    Fairweather, G
    Bialecki, B
    [J]. APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 299 - 306
  • [4] An ETD Crank-Nicolson method for reaction-diffusion systems
    Kleefeld, B.
    Khaliq, A. Q. M.
    Wade, B. A.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (04) : 1309 - 1335
  • [5] The Extrapolated Crank-Nicolson Orthogonal Spline Collocation Method for a Quasilinear Parabolic Problem with Nonlocal Boundary Conditions
    Bialecki, B.
    Fairweather, G.
    Lopez-Marcos, J. C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (01) : 265 - 283
  • [6] An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
    Fairweather, Graeme
    Yang, Xuehua
    Xu, Da
    Zhang, Haixiang
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (03) : 1217 - 1239
  • [7] An ADI Crank-Nicolson orthogonal spline collocation method for 2D parabolic problems with an interface
    Bhal, Santosh Kumar
    Danumjaya, P.
    Fairweather, G.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 160 : 142 - 147
  • [8] A CRANK-NICOLSON ADI SPECTRAL METHOD FOR A TWO-DIMENSIONAL RIESZ SPACE FRACTIONAL NONLINEAR REACTION-DIFFUSION EQUATION
    Zeng, Fanhai
    Liu, Fawang
    Li, Changpin
    Burrage, Kevin
    Turner, Ian
    Anh, V.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 2599 - 2622
  • [9] Maximum norm convergence analysis of extrapolated Crank-Nicolson orthogonal spline collocation for Burgers' equation in one space variable
    Bialecki, Bernard
    Fisher, Nick
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2018, 24 (10) : 1621 - 1642
  • [10] An ADI Crank–Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation
    Graeme Fairweather
    Xuehua Yang
    Da Xu
    Haixiang Zhang
    [J]. Journal of Scientific Computing, 2015, 65 : 1217 - 1239