An ETD Crank-Nicolson method for reaction-diffusion systems

被引:36
|
作者
Kleefeld, B. [2 ]
Khaliq, A. Q. M. [3 ,4 ]
Wade, B. A. [1 ]
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Brandenburg Tech Univ Cottbus, Inst Math, D-03013 Cottbus, Germany
[3] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[4] Middle Tennessee State Univ, Computat Sci Program, Murfreesboro, TN 37132 USA
关键词
chemotaxis; exotic options; exponential time differencing; nonlinear Black-Scholes equation; transaction cost; RUNGE-KUTTA METHODS; PARABOLIC PROBLEMS; NONSMOOTH DATA; STIFF SYSTEMS; SCHEMES; INTEGRATION; OPTIONS;
D O I
10.1002/num.20682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel Exponential Time Differencing Crank-Nicolson method is developed which is stable, second-order convergent, and highly efficient. We prove stability and convergence for semilinear parabolic problems with smooth data. In the nonsmooth data case, we employ a positivity-preserving initial damping scheme to recover the full rate of convergence. Numerical experiments are presented for a wide variety of examples, including chemotaxis and exotic options with transaction cost. (c) 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012
引用
收藏
页码:1309 / 1335
页数:27
相关论文
共 50 条
  • [1] An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems
    Fernandes, Ryan I.
    Fairweather, Graeme
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (19) : 6248 - 6267
  • [2] Convergence of the Crank-Nicolson Method for a Singularly Perturbed Parabolic Reaction-Diffusion System
    Victor, Franklin
    Miller, John J. H.
    Sigamani, Valarmathi
    [J]. DIFFERENTIAL EQUATIONS AND NUMERICAL ANALYSIS, 2016, 172 : 77 - 97
  • [3] An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction-diffusion systems on evolving domains
    Fernandes, Ryan I.
    Bialecki, Bernard
    Fairweather, Graeme
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 561 - 580
  • [4] IN DEFENSE OF CRANK-NICOLSON METHOD
    WILKES, JO
    [J]. AICHE JOURNAL, 1970, 16 (03) : 501 - &
  • [5] A CRANK-NICOLSON ADI SPECTRAL METHOD FOR A TWO-DIMENSIONAL RIESZ SPACE FRACTIONAL NONLINEAR REACTION-DIFFUSION EQUATION
    Zeng, Fanhai
    Liu, Fawang
    Li, Changpin
    Burrage, Kevin
    Turner, Ian
    Anh, V.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 2599 - 2622
  • [6] Local Crank-Nicolson Method for Solving the Nonlinear Diffusion Equation
    Abduwali, Abdurishit
    Kohno, Toshiyuki
    Niki, Hiroshi
    [J]. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (02): : 165 - 169
  • [7] ALTERNATING BAND CRANK-NICOLSON METHOD FOR
    陈劲
    张宝琳
    [J]. Applied Mathematics:A Journal of Chinese Universities, 1993, (02) : 150 - 162
  • [8] An analysis of the Crank-Nicolson method for subdiffusion
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 518 - 541
  • [9] Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    Celik, Cem
    Duman, Melda
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1743 - 1750
  • [10] Invariantization of the Crank-Nicolson method for Burgers' equation
    Kim, Pilwon
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 243 - 254