Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations

被引:0
|
作者
Nafiseh Noghrei
Asghar Kerayechian
Ali R. Soheili
机构
[1] Ferdowsi University of Mashhad,Department of Applied Mathematics
[2] Ferdowsi University of Mashhad,Department of Applied Mathematics, School of Mathematical Sciences
来源
Mathematical Sciences | 2022年 / 16卷
关键词
Space-fractional diffusion equations; Riemann–Liouville fractional derivatives; DE-Sinc quadrature method; Gaussian-RBF; 76R50; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
The combination of Sinc quadrature method and double exponential transformation (DE) is a powerful tool to approximate the singular integrals, and radial basis functions (RBFs) are useful for the higher-dimensional space problem. In this study, we develop a numerical method base on Gaussian-RBF combined with QR-factorization of arising matrix and DE-quadrature Sinc method to approximate the solution of two-dimensional space-fractional diffusion equations. When the number of central nodes increases, the ill-conditioning of resultant matrix can be eliminated by using GRBF-QR method. Two numerical examples have been presented to test the efficiency and accuracy of the method.
引用
收藏
页码:87 / 96
页数:9
相关论文
共 50 条
  • [41] Discrete monotone method for space-fractional nonlinear reaction–diffusion equations
    Salvador Flores
    Jorge E. Macías-Díaz
    Ahmed S. Hendy
    [J]. Advances in Difference Equations, 2019
  • [42] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    [J]. Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [43] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    [J]. NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [44] A finite volume method for two-dimensional Riemann-Liouville space-fractional diffusion equation and its efficient implementation
    Fu, Hongfei
    Liu, Huan
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 316 - 334
  • [45] On two-dimensional magnetohydrodynamic equations with fractional diffusion
    Ji, Eunjeong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 80 : 55 - 65
  • [46] Radial basis functions method for solving the fractional diffusion equations
    Zafarghandi, Fahimeh Saberi
    Mohammadi, Maryam
    Babolian, Esmail
    Javadi, Shahnam
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 342 : 224 - 246
  • [47] A Meshless Local Radial Basis Function Method for Two-Dimensional Incompressible Navier-Stokes Equations
    Wang, Zhi Heng
    Huang, Zhu
    Zhang, Wei
    Xi, Guang
    [J]. NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 67 (04) : 320 - 337
  • [48] A meshless symplectic method for two-dimensional nonlinear Schrodinger equations based on radial basis function approximation
    Sun, Zhengjie
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 104 : 1 - 7
  • [49] Spectral direction splitting methods for two-dimensional space fractional diffusion equations
    Song, Fangying
    Xu, Chuanju
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 196 - 214
  • [50] TWO-DIMENSIONAL FRACTIONAL EULER POLYNOMIALS METHOD FOR FRACTIONAL DIFFUSION-WAVE EQUATIONS
    Balachandar, S. Raja
    Venkatesh, S. G.
    Balasubramanian, K.
    Uma, D.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)