Differential quadrature method for space-fractional diffusion equations on 2D irregular domains

被引:6
|
作者
Zhu, X. G. [1 ]
Yuan, Z. B. [1 ]
Liu, F. [2 ]
Nie, Y. F. [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, GPO Box 2434, Brisbane, Qld 4001, Australia
关键词
Differential quadrature (DQ); Radial basis functions (RBFs); Fractional directional derivatives; Space-fractional diffusion equations; 35R11; 65D25; 65M99; FINITE-ELEMENT-METHOD; ADVECTION-DISPERSION EQUATION; WAVE EQUATION; VARIABLE-COEFFICIENTS; INTERPOLATION METHODS; COLLOCATION METHOD; SHAPE PARAMETER; GALERKIN METHOD; VOLUME METHOD; APPROXIMATION;
D O I
10.1007/s11075-017-0464-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by Levy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.
引用
收藏
页码:853 / 877
页数:25
相关论文
共 50 条
  • [1] Differential quadrature method for space-fractional diffusion equations on 2D irregular domains
    X. G. Zhu
    Z. B. Yuan
    F. Liu
    Y. F. Nie
    [J]. Numerical Algorithms, 2018, 79 : 853 - 877
  • [2] Algebra preconditionings for 2D Riesz distributed-order space-fractional diffusion equations on convex domains
    Mazza, Mariarosa
    Serra-Capizzano, Stefano
    Sormani, Rosita Luisa
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2024, 31 (03)
  • [3] A class of RBFs-based DQ methods for the space-fractional diffusion equations on 3D irregular domains
    X. G. Zhu
    Y. F. Nie
    Z. H. Ge
    Z. B. Yuan
    J. G. Wang
    [J]. Computational Mechanics, 2020, 66 : 221 - 238
  • [4] A class of RBFs-based DQ methods for the space-fractional diffusion equations on 3D irregular domains
    Zhu, X. G.
    Nie, Y. F.
    Ge, Z. H.
    Yuan, Z. B.
    Wang, G.
    [J]. COMPUTATIONAL MECHANICS, 2020, 66 (01) : 221 - 238
  • [5] A fast finite volume method for conservative space-fractional diffusion equations in convex domains
    Jia, Jinhong
    Wang, Hong
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 310 : 63 - 84
  • [6] Differential Quadrature and Cubature Methods for Steady-State Space-Fractional Advection-Diffusion Equations
    Pang, Guofei
    Chen, Wen
    Sze, K. Y.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (04): : 299 - 322
  • [7] Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains
    Yang, Z.
    Yuan, Z.
    Nie, Y.
    Wang, J.
    Zhu, X.
    Liu, F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 863 - 883
  • [8] High Accuracy Spectral Method for the Space-Fractional Diffusion Equations
    Zhai, Shuying
    Gui, Dongwei
    Zhao, Jianping
    Feng, Xinlong
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2014, 47 (03): : 274 - 286
  • [9] Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations
    Noghrei, Nafiseh
    Kerayechian, Asghar
    Soheili, Ali R.
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (01) : 87 - 96
  • [10] An efficient spline-based DQ method for 2D/3D Riesz space-fractional convection-diffusion equations
    Zhu, Xiaogang
    Zhang, Yaping
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 81