High Accuracy Spectral Method for the Space-Fractional Diffusion Equations

被引:13
|
作者
Zhai, Shuying [1 ]
Gui, Dongwei [2 ]
Zhao, Jianping [3 ]
Feng, Xinlong [3 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362011, Peoples R China
[2] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Cele Natl Stn Observat & Res Desert Grassland Eco, Urumqi, Xinjiang, Peoples R China
[3] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
来源
JOURNAL OF MATHEMATICAL STUDY | 2014年 / 47卷 / 03期
关键词
Space-fractional diffusion equation; fractional Laplacian; Chebyshev collocation method; Fourier spectral method; implicit-explicit Runge-Kutta method;
D O I
10.4208/jms.v47n3.14.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a high order accurate spectral method is presented for the space-fractional diffusion equations. Based on Fourier spectral method in space and Chebyshev collocation method in time, three high order accuracy schemes are proposed. Themain advantages of this method are that it yields a fully diagonal representation of the fractional operator, with increased accuracy and efficiency comparedwith low-order counterparts, and a completely straightforward extension to high spatial dimensions. Some numerical examples, including Allen-Cahn equation, are conducted to verify the effectiveness of this method.
引用
收藏
页码:274 / 286
页数:13
相关论文
共 50 条
  • [1] Numerical simulation for the space-fractional diffusion equations
    Kheybari, Samad
    Darvishi, Mohammad Taghi
    Hashemi, Mir Sajjad
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 57 - 69
  • [2] Particle simulation of space-fractional diffusion equations
    Lucchesi, M.
    Allouch, S.
    Le Maitre, O. P.
    Mustapha, K. A.
    Knio, O. M.
    COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (03) : 491 - 507
  • [3] Spectral solutions for diffusion equations of Riesz distributed-order space-fractional
    Abdelkawy, Mohamed A.
    Al-Shomrani, Mohamed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1045 - 1054
  • [4] Multidimensional solutions of space-fractional diffusion equations
    Hanyga, A
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016): : 2993 - 3005
  • [5] Spectral Galerkin Methods for Riesz Space-Fractional Convection-Diffusion Equations
    Zhang, Xinxia
    Wang, Jihan
    Wu, Zhongshu
    Tang, Zheyi
    Zeng, Xiaoyan
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [6] Discrete monotone method for space-fractional nonlinear reaction–diffusion equations
    Salvador Flores
    Jorge E. Macías-Díaz
    Ahmed S. Hendy
    Advances in Difference Equations, 2019
  • [7] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [8] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [9] Jacobi spectral collocation method of space-fractional Navier-Stokes equations
    Jiao, Yujian
    Li, Tingting
    Zhang, Zhongqiang
    Applied Mathematics and Computation, 2025, 488
  • [10] Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations
    Moghaderi, Hamid
    Dehghan, Mehdi
    Donatelli, Marco
    Mazza, Mariarosa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 992 - 1011