High Accuracy Spectral Method for the Space-Fractional Diffusion Equations

被引:14
|
作者
Zhai, Shuying [1 ]
Gui, Dongwei [2 ]
Zhao, Jianping [3 ]
Feng, Xinlong [3 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362011, Peoples R China
[2] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Cele Natl Stn Observat & Res Desert Grassland Eco, Urumqi, Xinjiang, Peoples R China
[3] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
来源
JOURNAL OF MATHEMATICAL STUDY | 2014年 / 47卷 / 03期
关键词
Space-fractional diffusion equation; fractional Laplacian; Chebyshev collocation method; Fourier spectral method; implicit-explicit Runge-Kutta method;
D O I
10.4208/jms.v47n3.14.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a high order accurate spectral method is presented for the space-fractional diffusion equations. Based on Fourier spectral method in space and Chebyshev collocation method in time, three high order accuracy schemes are proposed. Themain advantages of this method are that it yields a fully diagonal representation of the fractional operator, with increased accuracy and efficiency comparedwith low-order counterparts, and a completely straightforward extension to high spatial dimensions. Some numerical examples, including Allen-Cahn equation, are conducted to verify the effectiveness of this method.
引用
收藏
页码:274 / 286
页数:13
相关论文
共 50 条
  • [21] Discrete monotone method for space-fractional nonlinear reaction-diffusion equations
    Flores, Salvador
    Macias-Diaz, Jorge E.
    Hendy, Ahmed S.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019,
  • [22] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Hong Guang Sun
    Zhaoyang Wang
    Jiayi Nie
    Yong Zhang
    Rui Xiao
    Computational Mechanics, 2021, 67 : 17 - 32
  • [23] Generalized finite difference method for a class of multidimensional space-fractional diffusion equations
    Sun, Hong Guang
    Wang, Zhaoyang
    Nie, Jiayi
    Zhang, Yong
    Xiao, Rui
    COMPUTATIONAL MECHANICS, 2021, 67 (01) : 17 - 32
  • [24] High-order time stepping Fourier spectral method for multi-dimensional space-fractional reaction-diffusion equations
    Alzahrani, S. S.
    Khaliq, A. Q. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (03) : 615 - 630
  • [25] A SURVEY ON NUMERICAL METHODS FOR SPECTRAL SPACE-FRACTIONAL DIFFUSION PROBLEMS
    Harizanov, Stanislav
    Lazarov, Raytcho
    Margenov, Svetozar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) : 1605 - 1646
  • [26] A conservative spectral Galerkin method for the coupled nonlinear space-fractional Schr?dinger equations
    Wang, Ying
    Mei, Liquan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (12) : 2387 - 2410
  • [27] Fibonacci collocation pseudo-spectral method of variable-order space-fractional diffusion equations with error analysis
    Mohamed, A. S.
    AIMS MATHEMATICS, 2022, 7 (08): : 14323 - 14337
  • [28] Numerical approximation of space-fractional diffusion equation using Laguerre spectral collocation method
    Ayalew, Minilik
    Ayalew, Mekash
    Aychluh, Mulualem
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2025,
  • [29] A Survey on Numerical Methods for Spectral Space-Fractional Diffusion Problems
    Stanislav Harizanov
    Raytcho Lazarov
    Svetozar Margenov
    Fractional Calculus and Applied Analysis, 2020, 23 : 1605 - 1646
  • [30] A Carleman estimate of some anisotropic space-fractional diffusion equations
    Jia, Junxiong
    Wu, Bangyu
    APPLIED MATHEMATICS LETTERS, 2018, 80 : 1 - 7