Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations

被引:148
|
作者
Bu, Weiping [1 ]
Tang, Yifa [1 ]
Yang, Jiye [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method; Riesz space fractional diffusion equation; Stability; Convergence; Extrapolation method; ADVECTION-DISPERSION EQUATIONS; NUMERICAL APPROXIMATION; DIFFERENTIAL-EQUATIONS; BOUNDED DOMAINS; SUBDIFFUSION; CONVERGENCE;
D O I
10.1016/j.jcp.2014.07.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, a class of two-dimensional Riesz space fractional diffusion equations is considered. Some fractional spaces are established and some equivalences between fractional derivative spaces and fractional Sobolev space are presented. By the Galerkin finite element method and backward difference method, a fully discrete scheme is obtained. According to Lax-Milgram theorem, the existence and uniqueness of the solution to the fully discrete scheme are investigated. The stability and convergence of the scheme are also derived. Finally, some numerical examples are given for verification of our theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 50 条
  • [1] Finite difference/spectral element method for one and two-dimensional Riesz space fractional advection-dispersion equations
    Saffarian, Marziyeh
    Mohebbi, Akbar
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 : 348 - 370
  • [2] Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains
    Yang, Z.
    Yuan, Z.
    Nie, Y.
    Wang, J.
    Zhu, X.
    Liu, F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 863 - 883
  • [3] A FAST FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Basu, Treena S.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : A2444 - A2458
  • [4] A fast numerical method for two-dimensional Riesz space fractional diffusion equations on a convex bounded region
    Chen, S.
    Liu, F.
    Turner, I
    Anh, V
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 66 - 80
  • [5] Compact ADI Method for Two-Dimensional Riesz Space Fractional Diffusion Equation
    Valizadeh, Sohrab
    Malek, Alaeddin
    Borhanifara, Abdollah
    [J]. FILOMAT, 2021, 35 (05) : 1543 - 1554
  • [6] Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation
    Zhao, Yue
    Bu, Weiping
    Zhao, Xuan
    Tang, Yifa
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 117 - 135
  • [7] A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
    Somayeh Yeganeh
    Reza Mokhtari
    Jan S. Hesthaven
    [J]. Communications on Applied Mathematics and Computation, 2020, 2 : 689 - 709
  • [8] A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
    Yeganeh, Somayeh
    Mokhtari, Reza
    Hesthaven, Jan S.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020, 2 (04) : 689 - 709
  • [9] Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations
    Zhao, Y.
    Zhang, Y.
    Shi, D.
    Liu, F.
    Turner, I.
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 59 : 38 - 47
  • [10] High accuracy analysis of an H1-Galerkin mixed finite element method for two-dimensional time fractional diffusion equations
    Shi, Z. G.
    Zhao, Y. M.
    Liu, F.
    Tang, Y. F.
    Wang, F. L.
    Shi, Y. H.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (08) : 1903 - 1914