Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations

被引:148
|
作者
Bu, Weiping [1 ]
Tang, Yifa [1 ]
Yang, Jiye [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element method; Riesz space fractional diffusion equation; Stability; Convergence; Extrapolation method; ADVECTION-DISPERSION EQUATIONS; NUMERICAL APPROXIMATION; DIFFERENTIAL-EQUATIONS; BOUNDED DOMAINS; SUBDIFFUSION; CONVERGENCE;
D O I
10.1016/j.jcp.2014.07.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, a class of two-dimensional Riesz space fractional diffusion equations is considered. Some fractional spaces are established and some equivalences between fractional derivative spaces and fractional Sobolev space are presented. By the Galerkin finite element method and backward difference method, a fully discrete scheme is obtained. According to Lax-Milgram theorem, the existence and uniqueness of the solution to the fully discrete scheme are investigated. The stability and convergence of the scheme are also derived. Finally, some numerical examples are given for verification of our theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:26 / 38
页数:13
相关论文
共 50 条
  • [31] SOLVING FRACTIONAL DIFFUSION AND FRACTIONAL DIFFUSION-WAVE EQUATIONS BY PETROV-GALERKIN FINITE ELEMENT METHOD
    Esen, A.
    Ucar, Y.
    Yagmurlu, M.
    Tasbozan, O.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (02): : 155 - 168
  • [32] Parallel-in-time multigrid for space-time finite element approximations of two-dimensional space-fractional diffusion equations
    Yue, Xiaoqiang
    Shu, Shi
    Xu, Xiaowen
    Bu, Weiping
    Pan, Kejia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (11) : 3471 - 3484
  • [33] A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations
    Cheng, Xiujun
    Duan, Jinqiao
    Li, Dongfang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 452 - 464
  • [34] Fully Finite Element Adaptive AMG Method for Time-Space Caputo-Riesz Fractional Diffusion Equations
    Yue, X. Q.
    Bu, W. P.
    Shu, S.
    Liu, M. H.
    Wang, S.
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (05) : 1103 - 1125
  • [35] A PETROV-GALERKIN FINITE ELEMENT METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 481 - 503
  • [36] Alternating Direction Implicit Galerkin Finite Element Method for the Two-Dimensional Time Fractional Evolution Equation
    Li, Limei
    Xu, Da
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (01) : 41 - 57
  • [37] A linear B-spline interpolation/Galerkin finite element method for the two-dimensional Riesz space distributed-order diffusion-wave equation with error analysis
    Derakhshan, M. H.
    Marasi, H. R.
    Kumar, Pushpendra
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (04):
  • [38] Numerical simulation for the two-dimensional and three-dimensional Riesz space fractional diffusion equations with delay and a nonlinear reaction term
    Yang, Shuiping
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (10) : 1957 - 1978
  • [39] A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations
    Yang, Qianqian
    Turner, Ian
    Moroney, Timothy
    Liu, Fawang
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3755 - 3762
  • [40] Finite element method for two-dimensional time-fractional tricomi-type equations
    Zhang, Xindong
    Huang, Pengzhan
    Feng, Xinlong
    Wei, Leilei
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (04) : 1081 - 1096