A FAST FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL SPACE-FRACTIONAL DIFFUSION EQUATIONS

被引:195
|
作者
Wang, Hong [1 ]
Basu, Treena S. [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29203 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2012年 / 34卷 / 05期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
anomalous diffusion; circulant matrix; conjugate gradient squared method; fast Fourier transform; space-fractional diffusion equation; Toeplitz matrix; ADVECTION-DISPERSION EQUATIONS; NUMERICAL-SOLUTION; BOUNDED DOMAINS; APPROXIMATION; WALK;
D O I
10.1137/12086491X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractional diffusion equations model phenomena exhibiting anomalous diffusion that cannot be modeled accurately by second-order diffusion equations. Because of the nonlocal property of fractional differential operators, numerical methods for space-fractional diffusion equations generate complicated dense or full coefficient matrices. Consequently, these numerical methods were traditionally solved by Gaussian elimination, which requires computational work of O(N-3) per time step and O(N-2) of memory, where N is the number of spatial grid points in the discretization. The significant computational work and memory requirement of the numerical methods impose a serious challenge for the numerical simulation of two-and especially three-dimensional space-fractional diffusion equations. We develop a fast and yet accurate solution method for the implicit finite difference discretization of space-fractional diffusion equations in two space dimensions by carefully analyzing the structure of the coefficient matrix of the finite difference method and delicately decomposing the coefficient matrix into a combination of sparse and structured dense matrices. The fast method has a computational work count of O(N log N) per iteration and a memory requirement of O(N), while retaining the same accuracy as the underlying finite difference method solved with Gaussian elimination. Numerical experiments show that the fast method has a significant reduction of CPU time, from two months and eight days as consumed by the traditional method to less than 40 minutes, with less than one ten-thousandth of the memory required by the traditional method, in the context of a two-dimensional space-fractional diffusion equation with 512 x 512 = 262,144 spatial nodes and 512 time steps. This demonstrates the utility of the method.
引用
收藏
页码:A2444 / A2458
页数:15
相关论文
共 50 条