Marginality and convexity in partition function form games

被引:0
|
作者
J. M. Alonso-Meijide
M. Álvarez-Mozos
M. G. Fiestras-Janeiro
A. Jiménez-Losada
机构
[1] Universidade de Santiago de Compostela,Dept. de Estatística, Análise Matemática e Optimización
[2] Universitat de Barcelona,Departament de Matemàtica Econòmica, Financera i Actuarial, BEAT
[3] Departamento de Estatística e Investigación Operativa,Universidade de Vigo
[4] Universidad de Sevilla,Departamento de Matemática Aplicada II, IMUS
关键词
Game theory; Partition function; Partial order; Marginality; Convexity; 91A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.
引用
收藏
页码:99 / 121
页数:22
相关论文
共 50 条
  • [21] Complexity of Computing the Shapley Value in Partition Function Form Games
    Skibski O.
    Journal of Artificial Intelligence Research, 2023, 77 : 1237 - 1274
  • [22] SOLUTIONS FOR A CLASS OF N-PERSON GAMES IN PARTITION FUNCTION FORM
    LUCAS, WF
    NAVAL RESEARCH LOGISTICS QUARTERLY, 1967, 14 (01): : 15 - &
  • [23] THE CLASS OF EFFICIENT LINEAR SYMMETRIC VALUES FOR GAMES IN PARTITION FUNCTION FORM
    Hernandez-Lamoneda, L.
    Sanchez-Perez, J.
    Sanchez-Sanchez, F.
    INTERNATIONAL GAME THEORY REVIEW, 2009, 11 (03) : 369 - 389
  • [24] Convexity and the Shapley value of Bertrand oligopoly TU-games in β-characteristic function form
    Hou, Dongshuang
    Lardon, Aymeric
    Driessen, Theo
    THEORY AND DECISION, 2025,
  • [25] Power Indices and Minimal Winning Coalitions for Simple Games in Partition Function Form
    J. M. Alonso-Meijide
    M. Álvarez-Mozos
    M. G. Fiestras-Janeiro
    Group Decision and Negotiation, 2017, 26 : 1231 - 1245
  • [26] APPLICATION OF THE REPRESENTATIONS OF SYMMETRIC GROUPS TO CHARACTERIZE SOLUTIONS OF GAMES IN PARTITION FUNCTION FORM
    Sanchez-Perez, Joss
    OPERATIONS RESEARCH AND DECISIONS, 2014, 24 (02) : 97 - 122
  • [27] Power Indices and Minimal Winning Coalitions for Simple Games in Partition Function Form
    Alonso-Meijide, J. M.
    Alvarez-Mozos, M.
    Fiestras-Janeiro, M. G.
    GROUP DECISION AND NEGOTIATION, 2017, 26 (06) : 1231 - 1245
  • [28] A Null-Player Axiom for the Myerson Value in Partition Function form Games: A Note
    Sanchez-Perez, Joss
    INTERNATIONAL GAME THEORY REVIEW, 2025,
  • [29] Shapley Value in Partition Function Form Games: New Research Perspectives for Features Selection
    Bimonte, Giovanna
    Senatore, Luigi
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 103 - 108
  • [30] A GAME IN PARTITION FUNCTION FORM WITH NO SOLUTION
    LUCAS, WF
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (03) : 582 - &