Marginality and convexity in partition function form games

被引:0
|
作者
J. M. Alonso-Meijide
M. Álvarez-Mozos
M. G. Fiestras-Janeiro
A. Jiménez-Losada
机构
[1] Universidade de Santiago de Compostela,Dept. de Estatística, Análise Matemática e Optimización
[2] Universitat de Barcelona,Departament de Matemàtica Econòmica, Financera i Actuarial, BEAT
[3] Departamento de Estatística e Investigación Operativa,Universidade de Vigo
[4] Universidad de Sevilla,Departamento de Matemática Aplicada II, IMUS
关键词
Game theory; Partition function; Partial order; Marginality; Convexity; 91A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.
引用
收藏
页码:99 / 121
页数:22
相关论文
共 50 条
  • [1] Marginality and convexity in partition function form games
    Alonso-Meijide, J. M.
    Alvarez-Mozos, M.
    Fiestras-Janeiro, M. G.
    Jimenez-Losada, A.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2021, 94 (01) : 99 - 121
  • [2] COMPROMISING IN PARTITION FUNCTION FORM GAMES AND COOPERATION IN PERFECT EXTENSIVE FORM GAMES
    Fukuda, E.
    Tijs, S. H.
    Branzei, R.
    Muto, S.
    INTERNATIONAL GAME THEORY REVIEW, 2006, 8 (03) : 329 - 338
  • [3] THE CONSENSUS VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Ju, Yuan
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (03) : 437 - 452
  • [4] A recursive core for partition function form games
    László Á. Kóczy
    Theory and Decision, 2007, 63 : 41 - 51
  • [5] A Graphical Representation for Games in Partition Function Form
    Skibski, Oskar
    Michalak, Tomasz P.
    Sakurai, Yuko
    Wooldridge, Michael
    Yokoo, Makoto
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1036 - 1042
  • [6] The recursive nucleolus for partition function form games
    Yang, Guangjing
    Sun, Hao
    JOURNAL OF MATHEMATICAL ECONOMICS, 2023, 104
  • [7] A recursive core for partition function form games
    Koczy, Laszlo A.
    THEORY AND DECISION, 2007, 63 (01) : 41 - 51
  • [8] THE SHAPLEY VALUE FOR PARTITION FUNCTION FORM GAMES
    Do, Kim Hang Pham
    Norde, Henk
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (02) : 353 - 360
  • [9] Inheritance of convexity for partition restricted games
    Skoda, A.
    DISCRETE OPTIMIZATION, 2017, 25 : 6 - 27
  • [10] An axiomatic characterization of a value for games in partition function form
    Hu, Cheng-Cheng
    Yang, Yi-You
    SERIES-JOURNAL OF THE SPANISH ECONOMIC ASSOCIATION, 2010, 1 (04): : 475 - 487