Marginality and convexity in partition function form games

被引:0
|
作者
J. M. Alonso-Meijide
M. Álvarez-Mozos
M. G. Fiestras-Janeiro
A. Jiménez-Losada
机构
[1] Universidade de Santiago de Compostela,Dept. de Estatística, Análise Matemática e Optimización
[2] Universitat de Barcelona,Departament de Matemàtica Econòmica, Financera i Actuarial, BEAT
[3] Departamento de Estatística e Investigación Operativa,Universidade de Vigo
[4] Universidad de Sevilla,Departamento de Matemática Aplicada II, IMUS
关键词
Game theory; Partition function; Partial order; Marginality; Convexity; 91A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.
引用
收藏
页码:99 / 121
页数:22
相关论文
共 50 条
  • [41] Optimal coalition structures for probabilistically monotone partition function games
    Shaheen Fatima
    Michael Wooldridge
    Autonomous Agents and Multi-Agent Systems, 2022, 36
  • [42] Optimal coalition structures for probabilistically monotone partition function games
    Fatima, Shaheen
    Wooldridge, Michael
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [43] COOPERATIVE GAMES IN STOCHASTIC CHARACTERISTIC FUNCTION FORM
    GRANOT, D
    MANAGEMENT SCIENCE, 1977, 23 (06) : 621 - 630
  • [44] STOCHASTIC GAMES UNDER CHARACTERISTIC FUNCTION FORM
    DURU, G
    MOULEN, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (10): : 681 - 684
  • [45] A path integral for the chiral-form partition function
    E. Andriolo
    N. Lambert
    T. Orchard
    C. Papageorgakis
    Journal of High Energy Physics, 2022
  • [46] New closed-form bounds on the partition function
    Krishnamurthy, Dvijotham
    Chakrabarti, Soumen
    Chaudhuri, Subhasis
    MACHINE LEARNING, 2008, 72 (03) : 205 - 229
  • [47] A path integral for the chiral-form partition function
    Andriolo, E.
    Lambert, N.
    Orchard, T.
    Papageorgakis, C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [48] New closed-form bounds on the partition function
    Dvijotham Krishnamurthy
    Soumen Chakrabarti
    Subhasis Chaudhuri
    Machine Learning, 2008, 72 : 205 - 229
  • [49] An explicit form of the polynomial part of a restricted partition function
    Dilcher K.
    Vignat C.
    Research in Number Theory, 3 (1)
  • [50] Convexity, differential equations and games
    Flåm, SD
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 429 - 438