Marginality and convexity in partition function form games

被引:0
|
作者
J. M. Alonso-Meijide
M. Álvarez-Mozos
M. G. Fiestras-Janeiro
A. Jiménez-Losada
机构
[1] Universidade de Santiago de Compostela,Dept. de Estatística, Análise Matemática e Optimización
[2] Universitat de Barcelona,Departament de Matemàtica Econòmica, Financera i Actuarial, BEAT
[3] Departamento de Estatística e Investigación Operativa,Universidade de Vigo
[4] Universidad de Sevilla,Departamento de Matemática Aplicada II, IMUS
关键词
Game theory; Partition function; Partial order; Marginality; Convexity; 91A12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.
引用
收藏
页码:99 / 121
页数:22
相关论文
共 50 条
  • [31] Games with externalities: games in coalition configuration function form
    Josune Albizuri, M.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2010, 72 (01) : 171 - 186
  • [32] Games with externalities: games in coalition configuration function form
    M. Josune Albizuri
    Mathematical Methods of Operations Research, 2010, 72 : 171 - 186
  • [33] SCHUR CONVEXITY OF DUAL FORM OF THE COMPLETE SYMMETRIC FUNCTION
    Zhang, Kongsheng
    Shi, Huannan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (04): : 963 - 970
  • [34] Convexity and log-concavity of the partition function weighted by the parity of the crank
    Dong, Janet J. W.
    Ji, Kathy Q.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025,
  • [35] Expectation formation rules and the core of partition function games
    Bloch, Francis
    van den Nouweland, Anne
    GAMES AND ECONOMIC BEHAVIOR, 2014, 88 : 339 - 353
  • [36] A SET OF AXIOMS FOR A VALUE FOR PARTITION-FUNCTION GAMES
    BOLGER, EM
    INTERNATIONAL JOURNAL OF GAME THEORY, 1989, 18 (01) : 37 - 44
  • [37] Optimal Coalition Structure Generation In Partition Function Games
    Michalak, Tomasz
    Dowell, Andrew
    McBurney, Peter
    Wooldridge, Michael
    ECAI 2008, PROCEEDINGS, 2008, 178 : 388 - 392
  • [38] ON THE CONVEXITY OF COMMUNICATION GAMES
    VANDENNOUWELAND, A
    BORM, P
    INTERNATIONAL JOURNAL OF GAME THEORY, 1991, 19 (04) : 421 - 430
  • [39] On the convexity of newsvendor games
    Oezen, Ulas
    Norde, Henk
    Slikker, Marco
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2011, 133 (01) : 35 - 42
  • [40] Partition games
    Dailly, Antoine
    Duchene, Eric
    Larsson, Urban
    Paris, Gabrielle
    DISCRETE APPLIED MATHEMATICS, 2020, 285 : 509 - 525