APPLICATION OF THE REPRESENTATIONS OF SYMMETRIC GROUPS TO CHARACTERIZE SOLUTIONS OF GAMES IN PARTITION FUNCTION FORM

被引:2
|
作者
Sanchez-Perez, Joss [1 ]
机构
[1] UASLP, Fac Econ, Av Pintores S-N,Col B Estado, San Luis Potosi 78213, Mexico
关键词
games in partition function form; value; representation theory; symmetric group;
D O I
10.5277/ord140205
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A different perspective from the more "traditional" approaches to studying solutions of games in partition function form has been presented. We provide a decomposition of the space of such games under the action of the symmetric group, for the cases with three and four players. In particular, we identify all the irreducible subspaces that are relevant to the study of linear symmetric solutions. We then use such a decomposition to derive a characterization of the class of linear and symmetric solutions, as well as of the class of linear, symmetric and efficient solutions.
引用
收藏
页码:97 / 122
页数:26
相关论文
共 39 条
  • [1] THE CLASS OF EFFICIENT LINEAR SYMMETRIC VALUES FOR GAMES IN PARTITION FUNCTION FORM
    Hernandez-Lamoneda, L.
    Sanchez-Perez, J.
    Sanchez-Sanchez, F.
    INTERNATIONAL GAME THEORY REVIEW, 2009, 11 (03) : 369 - 389
  • [2] SOLUTIONS FOR 4-PERSON GAMES IN PARTITION FUNCTION FORM
    LUCAS, WF
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (01): : 118 - &
  • [3] SOLUTIONS FOR A CLASS OF N-PERSON GAMES IN PARTITION FUNCTION FORM
    LUCAS, WF
    NAVAL RESEARCH LOGISTICS QUARTERLY, 1967, 14 (01): : 15 - &
  • [4] SOLUTIONS FOR NETWORK GAMES AND SYMMETRIC GROUP REPRESENTATIONS
    Sanchez-Perez, Joss
    OPERATIONS RESEARCH AND DECISIONS, 2019, 29 (04) : 95 - 123
  • [5] Marginality and convexity in partition function form games
    J. M. Alonso-Meijide
    M. Álvarez-Mozos
    M. G. Fiestras-Janeiro
    A. Jiménez-Losada
    Mathematical Methods of Operations Research, 2021, 94 : 99 - 121
  • [6] COMPROMISING IN PARTITION FUNCTION FORM GAMES AND COOPERATION IN PERFECT EXTENSIVE FORM GAMES
    Fukuda, E.
    Tijs, S. H.
    Branzei, R.
    Muto, S.
    INTERNATIONAL GAME THEORY REVIEW, 2006, 8 (03) : 329 - 338
  • [7] Marginality and convexity in partition function form games
    Alonso-Meijide, J. M.
    Alvarez-Mozos, M.
    Fiestras-Janeiro, M. G.
    Jimenez-Losada, A.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2021, 94 (01) : 99 - 121
  • [8] THE CONSENSUS VALUE FOR GAMES IN PARTITION FUNCTION FORM
    Ju, Yuan
    INTERNATIONAL GAME THEORY REVIEW, 2007, 9 (03) : 437 - 452
  • [9] A recursive core for partition function form games
    László Á. Kóczy
    Theory and Decision, 2007, 63 : 41 - 51
  • [10] A Graphical Representation for Games in Partition Function Form
    Skibski, Oskar
    Michalak, Tomasz P.
    Sakurai, Yuko
    Wooldridge, Michael
    Yokoo, Makoto
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1036 - 1042