A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem

被引:0
|
作者
Jian Meng
Gang Wang
Liquan Mei
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Northwestern Polytechnical University,School of Mathematics and Statistics
来源
Calcolo | 2021年 / 58卷
关键词
Virtual element method; Polytopal mesh; Transmission eigenvalue problem; Spectral approximation; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{0}$$\end{document} virtual element method for the Helmholtz transmission eigenvalue problem, which is a fourth-order non-selfadjoint eigenvalue problem. We consider the mixed formulation of the eigenvalue problem discretized by the lowest-order virtual elements. This discrete scheme is based on a conforming H1(Ω)×H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}(\varOmega )\times H^{1}(\varOmega )$$\end{document} discrete formulation, which makes use of lower regular virtual element spaces. However, the discrete scheme is a non-classical mixed method due to the non-selfadjointness, then we cannot use the framework of classical eigenvalue problem directly. We employ the spectral theory of compact operator to prove the spectral approximation. Finally, some numerical results show that numerical eigenvalues obtained by the proposed numerical scheme can achieve the optimal convergence order.
引用
收藏
相关论文
共 50 条
  • [1] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. CALCOLO, 2021, 58 (01)
  • [2] Convergence of a lowest-order finite element method for the transmission eigenvalue problem
    Camano, Jessika
    Rodriguez, Rodolfo
    Venegas, Pablo
    [J]. CALCOLO, 2018, 55 (03)
  • [3] Convergence of a lowest-order finite element method for the transmission eigenvalue problem
    Jessika Camaño
    Rodolfo Rodríguez
    Pablo Venegas
    [J]. Calcolo, 2018, 55
  • [4] A Lowest-Order Mixed Finite Element Method for the Elastic Transmission Eigenvalue Problem
    Xi, Yingxia
    Ji, Xia
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 1105 - 1132
  • [5] A lowest-order free-stabilization Virtual Element Method for the Laplacian eigenvalue problem
    Meng, Jian
    Wang, Xue
    Bu, Linlin
    Mei, Liquan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 410
  • [6] The Lowest-Order Stabilized Virtual Element Method for the Stokes Problem
    Liu, Xin
    Song, Qixuan
    Gao, Yu
    Chen, Zhangxin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 36 (01) : 221 - 247
  • [7] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [8] Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1685 - 1717
  • [9] A virtual element method for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2803 - 2831
  • [10] Lowest-order virtual element methods for linear elasticity problems
    Kwak, Do Y.
    Park, Hyeokjoo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390