Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes

被引:8
|
作者
Meng, Jian [1 ]
Wang, Gang [2 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
mixed virtual element method; transmission eigenvalue problem; spectral approximation; error estimates; EXISTENCE;
D O I
10.1093/imanum/drac019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose and analyze a mixed virtual element method for the Helmholtz transmission eigenvalue problem, which is a fourth order, nonlinear and non-self-adjoint eigenvalue problem and is important in the inverse scattering theory. The conforming virtual element is used for discretization. We prove correct spectral approximation and error estimates of the discrete scheme. Finally, we show several numerical examples to verify the theoretical results and present the performance of different stabilization parameters and the comparison with the C-1 virtual element method.
引用
收藏
页码:1685 / 1717
页数:33
相关论文
共 50 条
  • [1] VIRTUAL ELEMENTS FOR THE TRANSMISSION EIGENVALUE PROBLEM ON POLYTOPAL MESHES
    Mora, David
    Velasquez, Ivan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04): : A2425 - A2447
  • [2] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [3] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Jian Meng
    Gang Wang
    Liquan Mei
    [J]. Calcolo, 2021, 58
  • [4] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. CALCOLO, 2021, 58 (01)
  • [5] A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes
    Chen, Long
    Wang, Feng
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 864 - 886
  • [6] A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes
    Long Chen
    Feng Wang
    [J]. Journal of Scientific Computing, 2019, 78 : 864 - 886
  • [7] A virtual element method for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2803 - 2831
  • [8] A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media
    Liu, Qing
    Li, Tiexiang
    Zhang, Shuo
    [J]. INVERSE PROBLEMS, 2023, 39 (05)
  • [9] A MIXED VIRTUAL ELEMENT METHOD FOR THE BOUSSINESQ PROBLEM ON POLYGONAL MESHES
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03) : 392 - 427
  • [10] A virtual element method for the Laplacian eigenvalue problem in mixed form
    Meng, Jian
    Zhang, Yongchao
    Mei, Liquan
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 1 - 13