Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes

被引:8
|
作者
Meng, Jian [1 ]
Wang, Gang [2 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
mixed virtual element method; transmission eigenvalue problem; spectral approximation; error estimates; EXISTENCE;
D O I
10.1093/imanum/drac019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose and analyze a mixed virtual element method for the Helmholtz transmission eigenvalue problem, which is a fourth order, nonlinear and non-self-adjoint eigenvalue problem and is important in the inverse scattering theory. The conforming virtual element is used for discretization. We prove correct spectral approximation and error estimates of the discrete scheme. Finally, we show several numerical examples to verify the theoretical results and present the performance of different stabilization parameters and the comparison with the C-1 virtual element method.
引用
收藏
页码:1685 / 1717
页数:33
相关论文
共 50 条
  • [21] THE VIRTUAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH POTENTIAL TERMS ON POLYTOPIC MESHES
    Certik, Ondrej
    Gardini, Francesca
    Manzini, Gianmarco
    Vacca, Giuseppe
    [J]. APPLICATIONS OF MATHEMATICS, 2018, 63 (03) : 333 - 365
  • [22] An analysis of nonconforming virtual element methods on polytopal meshes with small faces
    Park, Hyeokjoo
    Kwak, Do Y.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (04): : 571 - 596
  • [23] A PLANE WAVE VIRTUAL ELEMENT METHOD FOR THE HELMHOLTZ PROBLEM
    Perugia, Ilaria
    Pietra, Paola
    Russo, Alessandro
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 783 - 808
  • [24] A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
    Xi, Yingxia
    Ji, Xia
    Zhang, Shuo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [25] A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
    Yingxia Xi
    Xia Ji
    Shuo Zhang
    [J]. Journal of Scientific Computing, 2020, 83
  • [26] Error estimates for a mixed finite element method for the Maxwell's transmission eigenvalue problem
    Wang, Chao
    Cui, Jintao
    Sun, Jiguang
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (03) : 1185 - 1200
  • [27] A virtual element method for a biharmonic Steklov eigenvalue problem
    Monzon, Gabriel
    [J]. ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) : 325 - 337
  • [28] A Lowest-Order Mixed Finite Element Method for the Elastic Transmission Eigenvalue Problem
    Xi, Yingxia
    Ji, Xia
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 1105 - 1132
  • [29] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Jiayu Han
    Yidu Yang
    [J]. Journal of Scientific Computing, 2016, 69 : 1279 - 1300
  • [30] Nonconforming Finite Element Method for the Transmission Eigenvalue Problem
    Ji, Xia
    Xi, Yingxia
    Xie, Hehu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (01) : 92 - 103