Nonconforming Finite Element Method for the Transmission Eigenvalue Problem

被引:18
|
作者
Ji, Xia [1 ]
Xi, Yingxia [1 ]
Xie, Hehu [1 ]
机构
[1] Chinese Acad Sci, Inst Computat Math, Acad Math & Syst Sci, LSEC,NCMIS, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Transmission eigenvalue; Morley element; nonconforming finite element method;
D O I
10.4208/aamm.2015.m1295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions. The error estimates of the eigenvalue and eigenfunction approximation are given, respectively. Finally, some numerical examples are provided to validate the theoretical results.
引用
收藏
页码:92 / 103
页数:12
相关论文
共 50 条
  • [1] A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
    Yingxia Xi
    Xia Ji
    Shuo Zhang
    [J]. Journal of Scientific Computing, 2020, 83
  • [2] A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
    Xi, Yingxia
    Ji, Xia
    Zhang, Shuo
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [3] Nonconforming virtual element discretization for the transmission eigenvalue problem
    Adak, Dibyendu
    Mora, David
    Velasquez, Ivan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 250 - 267
  • [4] Nonconforming finite element approximations of the Steklov eigenvalue problem
    Yang, Yidu
    Li, Qin
    Li, Sirui
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2388 - 2401
  • [5] Nonconforming finite element analysis for Poisson eigenvalue problem
    Shi, Dongyang
    Wang, Lele
    Liao, Xin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (05) : 835 - 845
  • [6] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Jiayu Han
    Yidu Yang
    [J]. Journal of Scientific Computing, 2016, 69 : 1279 - 1300
  • [7] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Han, Jiayu
    Yang, Yidu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 69 (03) : 1279 - 1300
  • [8] A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods
    Han, Xiaole
    Li, Yu
    Xie, Hehu
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2015, 8 (03) : 383 - 405
  • [9] NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD
    Weng, Zhifeng
    Zhai, Shuying
    Zeng, Yuping
    Yue, Xiaoqiang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1161 - 1176
  • [10] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Xie, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    [J]. APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 1 - 15