A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem

被引:8
|
作者
Xi, Yingxia [1 ]
Ji, Xia [2 ,3 ]
Zhang, Shuo [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonconforming finite element method; Transmission eigenvalues; High accurary;
D O I
10.1007/s10915-020-01247-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a cubic H-2 nonconforming finite element scheme B-h0(3) which does not correspond to a locally defined finite element with Ciarlet's triple but admit a set of local basis functions. For the first time, we deduce and write out the expression of basis functions explicitly. Distinguished from the most nonconforming finite element methods, (delta Delta(h)., Delta(h).) with non-constant coefficient delta > 0 is coercive on the nonconforming B-h0(3) space which makes it robust for numerical discretization. For fourth order eigenvalue problem, the B-h0(3) scheme can provide O(h(2)) approximation for the eigenspace in energy norm and O(h(4)) approximation for the eigenvalues. We test the B-h0(3) scheme on the vary-coefficient bi-Laplace source and eigenvalue problem, further, transmission eigenvalue problem. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed scheme.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem
    Yingxia Xi
    Xia Ji
    Shuo Zhang
    [J]. Journal of Scientific Computing, 2020, 83
  • [2] Nonconforming Finite Element Method for the Transmission Eigenvalue Problem
    Ji, Xia
    Xi, Yingxia
    Xie, Hehu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (01) : 92 - 103
  • [4] High accuracy analysis of elliptic eigenvalue problem for the Wilson nonconforming finite element
    Wu Dongsheng
    [J]. Acta Mathematicae Applicatae Sinica, 2001, 17 (2) : 200 - 206
  • [5] A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media
    Liu, Qing
    Li, Tiexiang
    Zhang, Shuo
    [J]. INVERSE PROBLEMS, 2023, 39 (05)
  • [6] A new nonconforming mixed finite element scheme for second order eigenvalue problem
    Shi, Dongyang
    Wang, Lele
    Liao, Xin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 842 - 855
  • [7] Nonconforming virtual element discretization for the transmission eigenvalue problem
    Adak, Dibyendu
    Mora, David
    Velasquez, Ivan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 250 - 267
  • [8] Nonconforming finite element approximations of the Steklov eigenvalue problem
    Yang, Yidu
    Li, Qin
    Li, Sirui
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (10) : 2388 - 2401
  • [9] Nonconforming finite element analysis for Poisson eigenvalue problem
    Shi, Dongyang
    Wang, Lele
    Liao, Xin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (05) : 835 - 845
  • [10] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Xie, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    [J]. APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 1 - 15