THE VIRTUAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH POTENTIAL TERMS ON POLYTOPIC MESHES

被引:31
|
作者
Certik, Ondrej [1 ]
Gardini, Francesca [2 ]
Manzini, Gianmarco [3 ]
Vacca, Giuseppe [4 ]
机构
[1] Los Alamos Natl Lab, Comp Computat & Stat Div, Grp CCS 2, Los Alamos, NM 87545 USA
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[3] Los Alamos Natl Lab, Theoret Div, Grp T 5, Los Alamos, NM 87545 USA
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via R Cozzi 55, I-20125 Milan, Italy
基金
欧洲研究理事会;
关键词
conforming virtual element; eigenvalue problem; Hamiltonian equation; polygonal mesh; ELLIPTIC PROBLEMS; APPROXIMATION; FORMULATIONS;
D O I
10.21136/AM.2018.0093-18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrodinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators that are directly computable from the degrees of freedom. The method shows a great flexibility with respect to the meshes and provides a correct spectral approximation with optimal convergence rates. This point is discussed from both the theoretical and the numerical viewpoint. The performance of the method is numerically investigated by solving the quantum harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem with zero potential for the first eigenvalues.
引用
收藏
页码:333 / 365
页数:33
相关论文
共 50 条
  • [1] The Virtual Element Method for Eigenvalue Problems with Potential Terms on Polytopic Meshes
    Ondřej Čertík
    Francesca Gardini
    Gianmarco Manzini
    Giuseppe Vacca
    [J]. Applications of Mathematics, 2018, 63 : 333 - 365
  • [2] THE NONCONFORMING VIRTUAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS
    Gardini, Francesca
    Manzini, Gianmarco
    Vacca, Giuseppe
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2019, 53 (03) : 749 - 774
  • [3] Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1685 - 1717
  • [4] Virtual element method for semilinear elliptic problems on polygonal meshes
    Adak, D.
    Natarajan, S.
    Natarajan, E.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 175 - 187
  • [5] Virtual element method for semilinear hyperbolic problems on polygonal meshes
    Adak, Dibyendu
    Natarajan, E.
    Kumar, Sarvesh
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (05) : 971 - 991
  • [6] A Virtual Element Method for elastic and inelastic problems on polytope meshes
    da Veiga, L. Beirao
    Lovadina, C.
    Mora, D.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 : 327 - 346
  • [7] Virtual element method for second-order elliptic eigenvalue problems
    Gardini, Francesca
    Vacca, Giuseppe
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 2026 - 2054
  • [8] Least-Squares Virtual Element Method for Stokes Problems on Polygonal Meshes
    Wang, Gang
    Wang, Ying
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)
  • [9] Virtual element method on polyhedral meshes for bi-harmonic eigenvalues problems
    Dassi, Franco
    Velasquez, Ivan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 121 : 85 - 101
  • [10] Virtual element method on polyhedral meshes for bi-harmonic eigenvalues problems
    Dassi, Franco
    Velásquez, Iván
    [J]. Computers and Mathematics with Applications, 2022, 121 : 85 - 101