THE VIRTUAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH POTENTIAL TERMS ON POLYTOPIC MESHES

被引:31
|
作者
Certik, Ondrej [1 ]
Gardini, Francesca [2 ]
Manzini, Gianmarco [3 ]
Vacca, Giuseppe [4 ]
机构
[1] Los Alamos Natl Lab, Comp Computat & Stat Div, Grp CCS 2, Los Alamos, NM 87545 USA
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[3] Los Alamos Natl Lab, Theoret Div, Grp T 5, Los Alamos, NM 87545 USA
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via R Cozzi 55, I-20125 Milan, Italy
基金
欧洲研究理事会;
关键词
conforming virtual element; eigenvalue problem; Hamiltonian equation; polygonal mesh; ELLIPTIC PROBLEMS; APPROXIMATION; FORMULATIONS;
D O I
10.21136/AM.2018.0093-18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrodinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators that are directly computable from the degrees of freedom. The method shows a great flexibility with respect to the meshes and provides a correct spectral approximation with optimal convergence rates. This point is discussed from both the theoretical and the numerical viewpoint. The performance of the method is numerically investigated by solving the quantum harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem with zero potential for the first eigenvalues.
引用
收藏
页码:333 / 365
页数:33
相关论文
共 50 条
  • [41] Radial integration boundary element method for acoustic eigenvalue problems
    Qu, Shen
    Li, Sheng
    Chen, Hao-Ran
    Qu, Zhan
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (7-8) : 1043 - 1051
  • [42] An iterative adaptive finite element method for elliptic eigenvalue problems
    Solin, Pavel
    Giani, Stefano
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (18) : 4582 - 4599
  • [43] Extension of the fixed grid finite element method to eigenvalue problems
    Maan, F. S.
    Querin, O. M.
    Barton, D. C.
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (8-9) : 607 - 617
  • [44] A High Accuracy Spectral Element Method for Solving Eigenvalue Problems
    Shan, Weikun
    Li, Huiyuan
    [J]. 14TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS, ENGINEERING AND SCIENCE (DCABES 2015), 2015, : 472 - 476
  • [45] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    C. Carstensen
    J. Gedicke
    V. Mehrmann
    A. Międlar
    [J]. Numerische Mathematik, 2014, 128 : 615 - 634
  • [46] THE ERROR-ESTIMATES FOR THE INFINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS
    HAN, H
    [J]. RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1982, 16 (02): : 113 - 128
  • [47] A mixed finite element method for fourth order eigenvalue problems
    Nataraj, Neela
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (01) : 60 - 72
  • [48] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106
  • [49] A BOUNDARY ELEMENT METHOD FOR EIGENVALUE PROBLEMS OF POLYGONAL MEMBRANES AND PLATES
    HEUER, R
    IRSCHIK, H
    [J]. ACTA MECHANICA, 1987, 66 (1-4) : 9 - 20
  • [50] A multilevel finite element method for Fredholm integral eigenvalue problems
    Xie, Hehu
    Zhou, Tao
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 173 - 184