An iterative adaptive finite element method for elliptic eigenvalue problems

被引:10
|
作者
Solin, Pavel [2 ,3 ]
Giani, Stefano [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA
[3] Inst Thermomech, Prague, Czech Republic
关键词
Partial differential equation; Eigenvalue problem; Iterative method; Adaptive higher-order finite element method; hp-FEM; Reproducible research;
D O I
10.1016/j.cam.2012.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the task of resolving accurately the nth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate n eigenpairs after each mesh refinement step, it can switch the order of eigenpairs, and for repeated eigenvalues it can return an arbitrary linear combination of eigenfunctions from the corresponding eigenspace. In order to circumvent these problems, we propose a novel adaptive algorithm that only calls a generalized eigensolver once at the beginning of the computation, and then employs an iterative method to pursue a selected eigenvalue-eigenfunction pair on a sequence of locally refined meshes. Both Picard's and Newton's variants of the iterative method are presented. The underlying partial differential equation (PDE) is discretized with higher-order finite elements (hp-FEM) but the algorithm also works for standard low-order FEM. The method is described and accompanied with theoretical analysis and numerical examples. Instructions on how to reproduce the results are provided. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:4582 / 4599
页数:18
相关论文
共 50 条
  • [1] Quadrature finite element method for elliptic eigenvalue problems
    Solov’ev S.I.
    [J]. Lobachevskii Journal of Mathematics, 2017, 38 (5) : 856 - 863
  • [2] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    C. Carstensen
    J. Gedicke
    V. Mehrmann
    A. Międlar
    [J]. Numerische Mathematik, 2014, 128 : 615 - 634
  • [3] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    Carstensen, C.
    Gedicke, J.
    Mehrmann, V.
    Miedlar, A.
    [J]. NUMERISCHE MATHEMATIK, 2014, 128 (04) : 615 - 634
  • [4] AN ADAPTIVE FINITE-ELEMENT METHOD FOR LINEAR ELLIPTIC PROBLEMS
    ERIKSSON, K
    JOHNSON, C
    [J]. MATHEMATICS OF COMPUTATION, 1988, 50 (182) : 361 - 383
  • [5] A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS
    Hong, Qichen
    Xie, Hehu
    Xu, Fei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A4208 - A4235
  • [6] A CONVERGENT ADAPTIVE METHOD FOR ELLIPTIC EIGENVALUE PROBLEMS
    Giani, S.
    Graham, I. G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1067 - 1091
  • [7] An iteratively adaptive multiscale finite element method for elliptic interface problems
    Hwang, Feng-Nan
    Su, Yi-Zhen
    Yao, Chien-Chou
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 127 : 211 - 225
  • [8] An iterative adaptive hp-FEM method for non-symmetric elliptic eigenvalue problems
    Solin, Pavel
    Giani, Stefano
    [J]. COMPUTING, 2013, 95 (01) : S183 - S213
  • [9] An iterative adaptive hp-FEM method for non-symmetric elliptic eigenvalue problems
    Pavel Solin
    Stefano Giani
    [J]. Computing, 2013, 95 : 183 - 213
  • [10] A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR STEKLOV EIGENVALUE PROBLEMS
    Lin, Qun
    Xie, Hehu
    [J]. APPLICATIONS OF MATHEMATICS 2012, 2012, : 134 - 143