THE VIRTUAL ELEMENT METHOD FOR EIGENVALUE PROBLEMS WITH POTENTIAL TERMS ON POLYTOPIC MESHES

被引:31
|
作者
Certik, Ondrej [1 ]
Gardini, Francesca [2 ]
Manzini, Gianmarco [3 ]
Vacca, Giuseppe [4 ]
机构
[1] Los Alamos Natl Lab, Comp Computat & Stat Div, Grp CCS 2, Los Alamos, NM 87545 USA
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[3] Los Alamos Natl Lab, Theoret Div, Grp T 5, Los Alamos, NM 87545 USA
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via R Cozzi 55, I-20125 Milan, Italy
基金
欧洲研究理事会;
关键词
conforming virtual element; eigenvalue problem; Hamiltonian equation; polygonal mesh; ELLIPTIC PROBLEMS; APPROXIMATION; FORMULATIONS;
D O I
10.21136/AM.2018.0093-18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the conforming virtual element method (VEM) to the numerical resolution of eigenvalue problems with potential terms on a polytopic mesh. An important application is that of the Schrodinger equation with a pseudopotential term. This model is a fundamental element in the numerical resolution of more complex problems from the Density Functional Theory. The VEM is based on the construction of the discrete bilinear forms of the variational formulation through certain polynomial projection operators that are directly computable from the degrees of freedom. The method shows a great flexibility with respect to the meshes and provides a correct spectral approximation with optimal convergence rates. This point is discussed from both the theoretical and the numerical viewpoint. The performance of the method is numerically investigated by solving the quantum harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem with zero potential for the first eigenvalues.
引用
收藏
页码:333 / 365
页数:33
相关论文
共 50 条
  • [21] Virtual element analysis of nonlocal coupled parabolic problems on polygonal meshes
    M. Arrutselvi
    D. Adak
    E. Natarajan
    S. Roy
    S. Natarajan
    [J]. Calcolo, 2022, 59
  • [22] Virtual element methods for nonlocal parabolic problems on general type of meshes
    Adak, D.
    Natarajan, S.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (05)
  • [23] Virtual element analysis of nonlocal coupled parabolic problems on polygonal meshes
    Arrutselvi, M.
    Adak, D.
    Natarajan, E.
    Roy, S.
    Natarajan, S.
    [J]. CALCOLO, 2022, 59 (02)
  • [24] Virtual element methods for nonlocal parabolic problems on general type of meshes
    D. Adak
    S. Natarajan
    [J]. Advances in Computational Mathematics, 2020, 46
  • [25] Virtual element method for nonlinear Sobolev equation on polygonal meshes
    Wanxiang Liu
    Yanping Chen
    Qiling Gu
    Yunqing Huang
    [J]. Numerical Algorithms, 2023, 94 : 1731 - 1761
  • [26] A nonconforming virtual element method for the Stokes problem on general meshes
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 : 694 - 711
  • [27] A C1 Virtual Element Method on polyhedral meshes
    da Veiga, L. Beirao
    Dassi, F.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (07) : 1936 - 1955
  • [28] High-order Virtual Element Method on polyhedral meshes
    da Veiga, L. Beirao
    Dassi, F.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (05) : 1110 - 1122
  • [29] Virtual element method for nonlinear Sobolev equation on polygonal meshes
    Liu, Wanxiang
    Chen, Yanping
    Gu, Qiling
    Huang, Yunqing
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (04) : 1731 - 1761
  • [30] A MIXED VIRTUAL ELEMENT METHOD FOR THE BOUSSINESQ PROBLEM ON POLYGONAL MESHES
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03) : 392 - 427