Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media

被引:8
|
作者
Meng, Jian [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Virtual element method; transmission eigenvalue problem; anisotropic media; a priori and a posteriori error estimates; ELLIPTIC PROBLEMS; APPROXIMATION;
D O I
10.1142/S0218202522500348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a conforming virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media. By using T-coercivity theory, the spectral approximation theory of compact operator and the projection and interpolation error estimates, we prove the spectral convergence of the discrete scheme and the optimal a priori error estimates for the discrete eigenvalues and eigenfunctions. The virtual element method has great flexibility in handling polygonal meshes, which motivates us to construct a fully computable a posteriori error estimator for the virtual element method. Then the upper bound of the approximation error is derived from the residual equation and the inf-sup condition. In turn, the related lower bound is established by using the bubble function strategy. Finally, we provide numerical examples to verify the theoretical results, including the optimal convergence of the virtual element scheme on uniformly refined meshes and the efficiency of the estimator on adaptively refined meshes.
引用
收藏
页码:1493 / 1529
页数:37
相关论文
共 50 条
  • [1] A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media
    Liu, Qing
    Li, Tiexiang
    Zhang, Shuo
    [J]. INVERSE PROBLEMS, 2023, 39 (05)
  • [2] Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1685 - 1717
  • [3] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Jian Meng
    Gang Wang
    Liquan Mei
    [J]. Calcolo, 2021, 58
  • [4] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. CALCOLO, 2021, 58 (01)
  • [5] A virtual element method for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2803 - 2831
  • [6] Virtual element method for the modified transmission eigenvalue problem in inverse scattering theory
    Meng, Jian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 192 (356-372) : 356 - 372
  • [7] Nonconforming virtual element discretization for the transmission eigenvalue problem
    Adak, Dibyendu
    Mora, David
    Velasquez, Ivan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 250 - 267
  • [8] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [9] SOLUTION OF THE HELMHOLTZ EIGENVALUE PROBLEM VIA THE BOUNDARY ELEMENT METHOD
    KIRKUP, SM
    AMINI, S
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (02) : 321 - 330
  • [10] A nonconforming Trefftz virtual element method for the Helmholtz problem
    Mascotto, Lorenzo
    Perugia, Ilaria
    Pichler, Alexander
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (09): : 1619 - 1656