A virtual element method for the transmission eigenvalue problem

被引:38
|
作者
Mora, David [1 ,2 ]
Velasquez, Ivan [3 ]
机构
[1] Univ Bio Bio, Dept Matemat, Concepcion, Chile
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] Univ Concepcion, CI2MA, Dept Ingn Matemat, Concepcion, Chile
来源
关键词
Virtual Element Method; transmission eigenvalue; spectral problem; error estimates; FORMULATION; APPROXIMATION;
D O I
10.1142/S0218202518500616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a Virtual Element Method (VEM) for solving a non-self-adjoint fourth-order eigenvalue problem derived from the transmission eigenvalue problem. We write a variational formulation and propose a C-1-conforming discretization by means of the VEM. We use the classical approximation theory for compact non-self-adjoint operators to obtain optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we present some numerical experiments illustrating the behavior of the virtual scheme on different families of meshes.
引用
收藏
页码:2803 / 2831
页数:29
相关论文
共 50 条
  • [1] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [2] Virtual element method for the modified transmission eigenvalue problem in inverse scattering theory
    Meng, Jian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 192 (356-372) : 356 - 372
  • [3] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. CALCOLO, 2021, 58 (01)
  • [4] Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (03) : 1685 - 1717
  • [5] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Jian Meng
    Gang Wang
    Liquan Mei
    [J]. Calcolo, 2021, 58
  • [6] Nonconforming virtual element discretization for the transmission eigenvalue problem
    Adak, Dibyendu
    Mora, David
    Velasquez, Ivan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 250 - 267
  • [7] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [8] A virtual element method for a biharmonic Steklov eigenvalue problem
    Monzon, Gabriel
    [J]. ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) : 325 - 337
  • [9] An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
    Jiayu Han
    Yidu Yang
    [J]. Journal of Scientific Computing, 2016, 69 : 1279 - 1300
  • [10] Nonconforming Finite Element Method for the Transmission Eigenvalue Problem
    Ji, Xia
    Xi, Yingxia
    Xie, Hehu
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (01) : 92 - 103