A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem

被引:0
|
作者
Jian Meng
Gang Wang
Liquan Mei
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Northwestern Polytechnical University,School of Mathematics and Statistics
来源
Calcolo | 2021年 / 58卷
关键词
Virtual element method; Polytopal mesh; Transmission eigenvalue problem; Spectral approximation; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{0}$$\end{document} virtual element method for the Helmholtz transmission eigenvalue problem, which is a fourth-order non-selfadjoint eigenvalue problem. We consider the mixed formulation of the eigenvalue problem discretized by the lowest-order virtual elements. This discrete scheme is based on a conforming H1(Ω)×H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}(\varOmega )\times H^{1}(\varOmega )$$\end{document} discrete formulation, which makes use of lower regular virtual element spaces. However, the discrete scheme is a non-classical mixed method due to the non-selfadjointness, then we cannot use the framework of classical eigenvalue problem directly. We employ the spectral theory of compact operator to prove the spectral approximation. Finally, some numerical results show that numerical eigenvalues obtained by the proposed numerical scheme can achieve the optimal convergence order.
引用
收藏
相关论文
共 50 条
  • [11] The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem
    Meng, Jian
    Mei, Liquan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 402
  • [12] The lowest-order stabilizer free weak Galerkin finite element method
    Al-Taweel, Ahmed
    Wang, Xiaoshen
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 434 - 445
  • [13] Virtual element method for the modified transmission eigenvalue problem in inverse scattering theory
    Meng, Jian
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 356 - 372
  • [14] Nonconforming virtual element discretization for the transmission eigenvalue problem
    Adak, Dibyendu
    Mora, David
    Velasquez, Ivan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 152 : 250 - 267
  • [15] A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media
    Liu, Qing
    Li, Tiexiang
    Zhang, Shuo
    [J]. INVERSE PROBLEMS, 2023, 39 (05)
  • [16] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [17] SOLUTION OF THE HELMHOLTZ EIGENVALUE PROBLEM VIA THE BOUNDARY ELEMENT METHOD
    KIRKUP, SM
    AMINI, S
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (02) : 321 - 330
  • [18] A lowest-order staggered DG method for the coupled Stokes-Darcy problem
    Zhao, Lina
    Park, Eun-Jae
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2871 - 2897
  • [19] A lowest-order staggered DG method for the coupled Stokes-Darcy problem
    Zhao L.
    Park E.-J.
    [J]. IMA Journal of Numerical Analysis, 2021, 40 (04) : 2871 - 2897
  • [20] A nonconforming Trefftz virtual element method for the Helmholtz problem
    Mascotto, Lorenzo
    Perugia, Ilaria
    Pichler, Alexander
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (09): : 1619 - 1656