A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem

被引:0
|
作者
Jian Meng
Gang Wang
Liquan Mei
机构
[1] Xi’an Jiaotong University,School of Mathematics and Statistics
[2] Northwestern Polytechnical University,School of Mathematics and Statistics
来源
Calcolo | 2021年 / 58卷
关键词
Virtual element method; Polytopal mesh; Transmission eigenvalue problem; Spectral approximation; 65N25; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{0}$$\end{document} virtual element method for the Helmholtz transmission eigenvalue problem, which is a fourth-order non-selfadjoint eigenvalue problem. We consider the mixed formulation of the eigenvalue problem discretized by the lowest-order virtual elements. This discrete scheme is based on a conforming H1(Ω)×H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}(\varOmega )\times H^{1}(\varOmega )$$\end{document} discrete formulation, which makes use of lower regular virtual element spaces. However, the discrete scheme is a non-classical mixed method due to the non-selfadjointness, then we cannot use the framework of classical eigenvalue problem directly. We employ the spectral theory of compact operator to prove the spectral approximation. Finally, some numerical results show that numerical eigenvalues obtained by the proposed numerical scheme can achieve the optimal convergence order.
引用
收藏
相关论文
共 50 条