A lowest-order free-stabilization Virtual Element Method for the Laplacian eigenvalue problem

被引:9
|
作者
Meng, Jian [1 ]
Wang, Xue [2 ]
Bu, Linlin [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xian Vocat Univ Informat, Sch Big Date & Cloud Computat, Shenhe Rd, Xian 710125, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Free-stabilization VEM; Polygonal mesh; Eigenvalue problem; A priori error estimate; GALERKIN APPROXIMATION;
D O I
10.1016/j.cam.2021.114013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a Virtual Element Method (VEM) for the Laplacian eigenvalue problem, which is designed to avoid the requirement of the stabilization terms in standard VEM bilinear forms. In the present method, the constructions of the bilinear forms depend on higher order polynomial projection. To exactly compute the bilinear forms, we need to modify the virtual element space associated to the higher order polynomial projection. Meanwhile, the continuity and coercivity of the discrete VEM bilinear forms depend on the number of vertices of the polygon. By the spectral approximation theory of compact operator and the projection and interpolation error estimates, we prove correct spectral approximation and error estimates for the VEM discrete scheme. Finally, we show numerical examples to verify the theoretical results, including the Laplace eigenvalue problem and the Steklov eigenvalue problem. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Meng, Jian
    Wang, Gang
    Mei, Liquan
    [J]. CALCOLO, 2021, 58 (01)
  • [2] A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem
    Jian Meng
    Gang Wang
    Liquan Mei
    [J]. Calcolo, 2021, 58
  • [3] Convergence of a lowest-order finite element method for the transmission eigenvalue problem
    Camano, Jessika
    Rodriguez, Rodolfo
    Venegas, Pablo
    [J]. CALCOLO, 2018, 55 (03)
  • [4] Convergence of a lowest-order finite element method for the transmission eigenvalue problem
    Jessika Camaño
    Rodolfo Rodríguez
    Pablo Venegas
    [J]. Calcolo, 2018, 55
  • [5] The Lowest-Order Stabilized Virtual Element Method for the Stokes Problem
    Liu, Xin
    Song, Qixuan
    Gao, Yu
    Chen, Zhangxin
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 36 (01) : 221 - 247
  • [6] A Lowest-Order Mixed Finite Element Method for the Elastic Transmission Eigenvalue Problem
    Xi, Yingxia
    Ji, Xia
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 1105 - 1132
  • [7] A lowest order stabilization-free mixed Virtual Element Method
    Borio, Andrea
    Lovadina, Carlo
    Marcon, Francesca
    Visinoni, Michele
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 160 : 161 - 170
  • [8] The lowest-order stabilizer free weak Galerkin finite element method
    Al-Taweel, Ahmed
    Wang, Xiaoshen
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 434 - 445
  • [9] A virtual element method for the Laplacian eigenvalue problem in mixed form
    Meng, Jian
    Zhang, Yongchao
    Mei, Liquan
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 1 - 13
  • [10] Lowest-order virtual element methods for linear elasticity problems
    Kwak, Do Y.
    Park, Hyeokjoo
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 390