A lowest-order free-stabilization Virtual Element Method for the Laplacian eigenvalue problem

被引:9
|
作者
Meng, Jian [1 ]
Wang, Xue [2 ]
Bu, Linlin [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xian Vocat Univ Informat, Sch Big Date & Cloud Computat, Shenhe Rd, Xian 710125, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Free-stabilization VEM; Polygonal mesh; Eigenvalue problem; A priori error estimate; GALERKIN APPROXIMATION;
D O I
10.1016/j.cam.2021.114013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a Virtual Element Method (VEM) for the Laplacian eigenvalue problem, which is designed to avoid the requirement of the stabilization terms in standard VEM bilinear forms. In the present method, the constructions of the bilinear forms depend on higher order polynomial projection. To exactly compute the bilinear forms, we need to modify the virtual element space associated to the higher order polynomial projection. Meanwhile, the continuity and coercivity of the discrete VEM bilinear forms depend on the number of vertices of the polygon. By the spectral approximation theory of compact operator and the projection and interpolation error estimates, we prove correct spectral approximation and error estimates for the VEM discrete scheme. Finally, we show numerical examples to verify the theoretical results, including the Laplace eigenvalue problem and the Steklov eigenvalue problem. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [42] GLOBAL SUPERCONVERGENCE OF THE LOWEST-ORDER MIXED FINITE ELEMENT ON MILDLY STRUCTURED MESHES
    Li, Yu-Wen
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 792 - 815
  • [43] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [44] A C0 virtual element method for the biharmonic eigenvalue problem
    Meng, Jian
    Mei, Liquan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (09) : 1821 - 1833
  • [45] A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges
    Lepe, Felipe
    Mora, David
    Rivera, Gonzalo
    Velasquez, Ivan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (02)
  • [46] A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges
    Felipe Lepe
    David Mora
    Gonzalo Rivera
    Iván Velásquez
    [J]. Journal of Scientific Computing, 2021, 88
  • [47] Mathematical and historical reflections on the lowest-order finite element models for thin structures
    Pitkäranta, J
    [J]. COMPUTERS & STRUCTURES, 2003, 81 (8-11) : 895 - 909
  • [48] Convergence of an adaptive lowest-order Raviart-Thomas element method for general second-order linear elliptic problems
    Dond, Asha K.
    Nataraj, Neela
    Pani, Amiya Kumar
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) : 832 - 860
  • [49] Hybrid star within the framework of a lowest-order constraint variational method
    Khanmohamadi, S.
    Moshfegh, H. R.
    Tehrani, S. Atashbar
    [J]. PHYSICAL REVIEW D, 2020, 101 (02)
  • [50] Stabilization-free virtual element method for plane elasticity
    Chen, Alvin
    Sukumar, N.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 138 : 88 - 105