A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem

被引:43
|
作者
Mora, David [1 ,2 ]
Rivera, Gonzalo [3 ]
Rodriguez, Rodolfo [2 ,4 ]
机构
[1] Univ Bio Bio, Dept Matemat, Casilla 5-C, Concepcion, Chile
[2] Univ Concepcion, Ctr Invest Ingn Matemat CI2MA, Casilla 160-C, Concepcion, Chile
[3] Univ Los Lagos, Dept Ciencias Exactas, Casilla 933, Osorno, Chile
[4] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
关键词
Virtual element method; A posteriori error estimates; Steklov eigenvalue problem; Polygonal meshes; RESONANT FREQUENCIES; FORMULATION; CONTAINERS; FLUID;
D O I
10.1016/j.camwa.2017.05.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the a posteriori error analysis of a virtual element method for the Steklov eigenvalue problem. The virtual element method has the advantage of using general polygonal meshes, which allows implementing efficiently mesh refinement strategies. We introduce a residual type a posteriori error estimator and prove its reliability and global efficiency. Local efficiency estimates also hold, although in some elements they involve boundary terms that are not known to be locally negligible. We use the corresponding error estimator to drive an adaptive scheme. Finally, we report the results of a couple of numerical tests, that allow us to assess the performance of this approach. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2172 / 2190
页数:19
相关论文
共 50 条
  • [1] A posteriori error estimates for a Steklov eigenvalue problem
    Sun, LingLing
    Yang, Yidu
    [J]. ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2081 - 2086
  • [2] A posteriori error estimates for the Steklov eigenvalue problem
    Armentano, Maria G.
    Padra, Claudio
    [J]. APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) : 593 - 601
  • [3] A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem
    Wang, Gang
    Meng, Jian
    Wang, Ying
    Mei, Liquan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3675 - 3710
  • [4] The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering
    Yanjun Li
    Hai Bi
    Yidu Yang
    [J]. Journal of Scientific Computing, 2022, 91
  • [5] The a Priori and a Posteriori Error Estimates of DG Method for the Steklov Eigenvalue Problem in Inverse Scattering
    Li, Yanjun
    Bi, Hai
    Yang, Yidu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (01)
  • [6] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [7] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [8] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    [J]. Journal of Scientific Computing, 2020, 84
  • [9] A virtual element method for a biharmonic Steklov eigenvalue problem
    Monzon, Gabriel
    [J]. ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) : 325 - 337
  • [10] A posteriori and superconvergence error analysis for finite element approximation of the Steklov eigenvalue problem
    Xiong, Chunguang
    Xie, Manting
    Luo, Fusheng
    Su, Hongling
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 90 - 99