A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem

被引:0
|
作者
Gang Wang
Ying Wang
Yinnian He
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
[2] Xi’an University of Architecture and Technology,School of Science
[3] Xi’an Jiaotong University,School of Mathematics and Statistics
来源
关键词
Stokes problem; Virtual element method; A posteriori error estimate; Polygonal meshes;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a residual-type a posteriori error estimator for the virtual element method for the Stokes problem. It is proved that the a posteriori error estimator is reliable and efficient. The virtual element method allows the use of very general polygonal meshes and handles the hanging nodes naturally. Consequently, the local post-processing of locally adapted mesh can be avoided, which simplifies the adaptive procedure. A series of numerical examples are reported to show the effectiveness of adaptive mesh refinement driven by this estimator.
引用
收藏
相关论文
共 50 条
  • [1] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [2] A posteriori error estimates for the virtual element method
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Tristan Pryer
    Oliver J. Sutton
    [J]. Numerische Mathematik, 2017, 137 : 857 - 893
  • [3] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Yanling Deng
    Fei Wang
    Huayi Wei
    [J]. Journal of Scientific Computing, 2020, 83
  • [4] A posteriori error estimates for the virtual element method
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    Sutton, Oliver J.
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (04) : 857 - 893
  • [5] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Deng, Yanling
    Wang, Fei
    Wei, Huayi
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [6] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [7] A posteriori error estimates of stabilized finite element method for the steady Navier-Stokes problem
    Zhang, Tong
    Zhao, Xin
    Lei, Gang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 9081 - 9092
  • [8] A POSTERIORI ERROR-ESTIMATES FOR THE STOKES PROBLEM
    BANK, RE
    WELFERT, BD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) : 591 - 623
  • [9] A posteriori error estimates for the generalized Stokes problem
    Repin S.
    Stenberg R.
    [J]. Journal of Mathematical Sciences, 2007, 142 (1) : 1828 - 1843
  • [10] A posteriori error estimates for the Stokes problem with singular sources
    Allendes, Alejandro
    Otarola, Enrique
    Salgado, Abner J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 : 1007 - 1032